Inertial Navigation Systems With Geodetic Application

By Christopher Jekeli

Table of Contents

Navtech Part # 1143

I Coordinate Frames and Transformations 1
1.1 Introduction 1
1.2 Coordinate Frames 3
1.2.1 Inertial Frame 3
1.2.2 Earth-Centered-Earth-Fixed Frame 6
1.2.3 Navigation Frame 6
1.3 Transformations 9
1.3.1 Direction Cosines 10
1.3.2 Euler Angles 11
1.3.3 Quaternions 13
1.3.4 Axial Vectors 18
1.3.5 Angular Rates 19
1.4 Differential Equation of the Transformation 20
1.5 Specific Coordinate Transformations 22
1.6 Fourier Transforms 27

2 Ordinary Differential Equations 31
3 Inertial Measurement Units

3.1 Introduction

3.2 Gyroscopes

3.2.1 Mechanical Gyroscopes

3.2.1.1 SDF Gyro

3.2.1.1.1 Principal Error Terms

3.2.1.2 TDF Gyro

3.2.2 Optical Gyroscopes

3.2.2.1 Ring Laser Gyro

3.2.2.1.1 RLG Error Sources

3.2.2.2 Fiber-Optic Gyro

3.2.2.2.1 FOG Error Sources

3.3 Accelerometer
3.3.1 Accelerations in Non-Inertial Frames 89
3.3.2 Force-Rebalance Dynamics 90
3.3.3 Pendulous Accelerometer Examples 93
3.3.4 Vibrating Element Dynamics 96
3.3.5 Error Sources 99

4 Inertial Navigation System 101

4.1 Introduction 101
4.2 Mechanizations 104
4.2.1 Space-Stabilized Mechanization 106
4.2.2 Local-Level Mechanization 106
4.2.2.1 Schuler Tuning 107
4.2.2.2 Wander Azimuth Mechanization 110
4.2.3 Strapdown Mechanization 112
4.2.3.1 Numerical Determination of the Transformation Matrix 114
4.2.3.1.1 A Second-Order Algorithm 115
4.2.3.1.2 A Third-Order Algorithm 118
4.2.3.2 Specializations 122
4.3 Navigation Equations 123
4.3.1 Unified Approach 124
4.3.2 Navigation Equations in i-Frame 126
4.3.3 Navigation Equations in e-Frame 126
4.3.4 Navigation Equations in n-Frame 126
4.3.5 Navigation Equations in w-Frame 131
4.3.6 Numerical Integration of Navigation Equations 134

5 System Error Dynamics 139
7 Linear Estimation

7.1 Introduction
7.2 Bayesian Estimation
 7.2.1 Optimal Estimation Criteria
 7.2.2 Estimation with Observations
 7.2.2.1 A Posteriori Density Function
 7.2.2.2 A Posteriori Estimate and Covariance
 7.3 Discrete Kalman Filter
 7.3.1 Observation Model
 7.3.2 Optimal State Vector Estimation
 7.3.2.1 Prediction
 7.3.2.2 Filtering
 7.3.2.3 Smoothing
 7.4 Discrete Linear Dynamics Model
 7.5 Modifications
 7.5.1 Augmented State Vector
 7.5.2 Closed-Loop Estimation
 7.6 A Simple Example
 7.7 Continuous Kalman Filter
 7.7.1 Covariance Function
 7.7.2 Solution to Matrix Ricatti Equation
 7.7.2.1 Constant Coefficient Matrices
 7.7.2.2 No System Process Noise
 7.7.2.3 No Observations
8 INS Initialization and Alignment

8.1 Introduction 238
8.2 Coarse Alignment 240
8.3 Fine Alignment and Calibration 243
 8.3.1 Acceleration Observations 244
 8.3.2 Velocity and Azimuth Observations 246
 8.3.3 Kinematic Alignment 252

9 The Global Positioning System (GPS)

9.1 Introduction 255
9.2 Global Positioning System 259
 9.2.1 Clocks and Time 259
 9.2.2 GPS Signals 261
 9.2.3 GPS Receiver 263
9.3 GPS Observables 266
9.4 GPS Errors 269
9.5 Combinations of Observations 273
 9.5.1 Dual-Frequency Pseudorange and Phase 275
 9.5.2 Single and Double Differences 278
9.6 Kinematic Positioning 282
 9.6.1 Dynamics Model 284
 9.6.2 Observation Equations 287
 9.6.3 Single-Receiver Case 288
 9.6.4 Multiple-Receiver Case 292
10 Geodetic Application

10.1 Introduction 295

10.2 Inertial Survey System 297
10.2.1 Historical Developments 297
10.2.2 Estimation Methods 300
10.2.2.1 Models and Observations 300
10.2.2.2 Parameter Estimation 302
10.2.3 Final Adjustments 303
10.2.4 Typical Results 305

10.3 GPS/INS Integration 306
10.3.1 Integration Modes 308
10.3.1.1 Decentralized Integration 310
10.3.1.2 Centralized Integration 314
10.3.2 Cycle Ambiguity Determination 318

10.4 Moving-Base Gravimetry 320
10.4.1 Gravitation from Inertial Positioning 323
10.4.2 Gravitation from Accelerometry 327
10.4.2.1 Kalman Filter Approaches 330
10.4.2.2 Scalar Gravimetry 334

References 336

Index 343