VSP6337L

When precision matters.®

VSP6337L VeroStar[™] Triple-band GNSS Precision Antenna + L-band

Frequency Coverage: GPS/QZSS-L1/L2/L5, GLONASS-G1/G2/G3, Galileo-E1/E5a/E5b, BeiDou-B1/B2/B2a, NavIC-L5 + L-band correction services

The patent-pending VSP6337L antenna employs Tallysman's unique VeroStar™ technology, providing high gain over the GPS/QZSS-L1/L2/L5, GLONASS-G1/G2/G3, Galileo-E1/E5a/E5b, BeiDou-B1/B2/B2a, and NavIC-L5 frequency bands, including the satellite-based augmentation system (SBAS) available in the region of operation [WAAS (North America), EGNOS (Europe), MSAS (Japan), or GAGAN (India)], as well as L-band correction services.

The light and compact embedded VeroStar[™] VSP6337L is designed and crafted for highaccuracy positioning while being robust and reliable.

With an exceptionally low roll-off from zenith to the horizon, the VeroStar™ antenna provides the best-in-class tracking of GNSS and L-band correction signals from low elevation angles. In addition, the optimized axial ratio at all elevation angles results in excellent multipath rejection, thus enabling accurate and precise code and phase tracking of GNSS and L-band correction signals.

A wide-band spherical antenna element enables the VeroStar[™] to deliver a ±2 mm phase centre variation (PCV), making it ideal for high-precision applications, such as autonomous vehicle navigation (land, sea, and air), smart survey devices, and maritime positioning.

The VeroStar™ antenna features a robust pre-filter and high-IP3 LNA architecture, minimizing de-sensing from high-level out-of-band signals, including 700 MHz LTE, while still providing a noise figure of only 1.8 dB.

The housed antenna, featuring an integrated rubber bumper to absorb routine impacts, has passed a battery of tests (water pressure, altitude, salt fog, shock, drop, and vibration) to ensure it can survive the rigours of day-to-day field use.

The unique features of the VeroStar[™] antenna guarantee it can deliver high signal-tonoise ratio (SNR) and highly accurate and precise code and phase tracking of GNSS signals from all elevation angles in the most challenging environments.

Applications

- High-precision GNSS systems
- All embedded precision applications, such as:
- Autonomous vehicle navigation (land, sea, air)
- Deformation monitoring stations
- Land survey rover
- Marine navigation
- RTK/PPP systems
- Precision agriculture

Features

- Tight phase centre ariation (± 2 mm typ.)
- Low axial ratios from zenith to horizon
- Low roll-off from zenith to the horizon
- Superior low-elevation L-band correction reception
- High G/T at low elevation angles
- \bullet Invariant performance from 3.0 to 16 VDC
- Low current (50 mA)
- Low noise figure (1.8 dB)
- Light, compact, and robust design
- IP69K, REACH, and RoHS compliant

Benefits

- Consistent performance across all frequency bands
- Excellent GNSS tracking from low elevation angles
- Extreme accuracy and precision
- Excellent multipath rejection

About Tallysman: With global headquarters and manufacturing in Ottawa, Canada, Tallysman is a leading manufacturer of high-precision antennas and components for Global Navigation Satellite System (GNSS) applications. Tallysman's mission is to support the needs of a new generation of positioning systems by delivering unprecedented antenna precision at competitive prices. Learn more at www.tallysman.com

NavtechGPS

info@NavtechGPS.com

www.NavtechGPS.com

+1-703-256-8900 or 800-628-0885

VSP6337L VeroStar™ Triple-band GNSS Precision Antenna + L-band

Frequency Coverage:

GPS/QZSS-L1/L2/L5, GLONASS-G1/G2/G3, Galileo-E1/E5a/E5b, BeiDou-B1/B2/B2a, NavIC-L5 + L-band correction services

Antenna Technology

GNSS triple-band crossed dipoles

			Gain	Axi	al Ratio
			dBic typ. at Zenith	dB	at Zenith
GN	SS				
GPS / QZSS	L1		4.0		< 1.0
	L2		4.5		< 1.0
	L5		4.0		< 1.0
	G1		4.0		< 1.0
GLONASS	G2		4.5		< 1.0
	G3		4.5		< 1.0
	E1		4.0		< 1.0
Galileo	E5a	a	4.0		< 1.0
Gaineo	E5I	b	4.5		< 1.0
	E6		-		-
	B1		4.0		< 1.0
BeiDou	B2		4.5		< 1.0
BeiDou	B2a	а	4.0		< 1.0
	B3		-		-
IRNSS / NavIC			4.0		< 1.0
QZSS			-		-
L-band correction services		4.0		< 1.0	
Satellite Communicatio					
Iridium		-		-	
Globalstar		-		-	
Other					
Axial Ratio at 10°	atio at 10° 5.0 dB max.		Efficiency		> 70%
Phase Centre Variation	± 2 mm typ. (no azi.)		G/T @10°C (L-band c.s.)		≥ -25.4 dB/K

Mechanicals

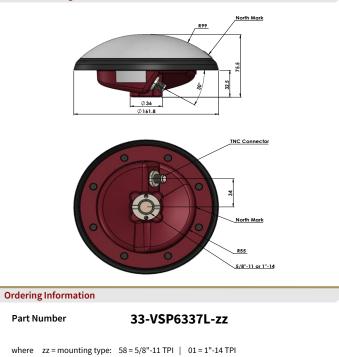
Mechanical Size	170 mm (dia.) x 74.9 mm (h.)
Weight	500 g
Available Connectors	TNC (female)
Radome / Enclosure	EXL9330 plastic
Mount	5/8"-11 TPI or 1"-14 TPI

Environmental

Warranty:

Parts and Labour

Operating Temperature	-45 °C to +85 °C
Storage Temperature	-55 °C to +95 °C
Mechanical Vibration	MIL-STD-810E - Test method 514.5
Shock and Drop	MIL-STD-810G - Test method 516.6
Salt Fog	MIL-STD-810G - Test method 509.6
Low Pressure - Altitude	MIL-STD-810F - Test method 500.5
IP Rating (housing)	IP69K
Compliance	IPC-A-610, FCC Part 15, RED / CE Mark, RoHS, REACH


3-year standard warranty

Low Noise Amplifier (LNA) - Measured at 3.0 VDC and 25°C

Frequency Bandwith		Out-of-Band Rejection
Lower Band	1160 - 1255 MHz	≥ 80 dB @ ≤ 500 MHz ≥ 50 dB @ ≤ 900 MHz ≥ 55 dB @ ≤ 1120 MHz ≥ 14 dB @ ≥ 1290 MHz ≥ 41 dB @ ≥ 1310 MHz ≥ 58 dB @ ≥ 1350 MHz ≥ 55 dB @ ≥ 1330 MHz
L-band corrections services	1539 - 1559 MHz	
Upper Band	1559 - 1606 MHz	≥ 70 dB @ ≤ 1450 MHz ≥ 52 dB @ ≤ 1480 MHz ≥ 35 dB @ ≤ 1500 MHz ≥ 60 dB @ ≥ 1650 MHz ≥ 74 dB @ ≥ 1700 MHz
Architecture	Pre-filter → LNA stage	e 1 → filter → LNA stage 2

Architecture	Pre-inter \rightarrow LNA stage 1 \rightarrow inter \rightarrow LNA stage 2
Gain	37 dB min.
Noise Figure	1.8 dB typ. @ 25 °C
VSWR	< 1.5:1 typ. 1.8:1 max.
Supply Voltage Range	3.0 to 16 VDC nominal
Supply Current	50 mA typ.
ESD Circuit Protection	15 kV air discharge
P 1dB Output	+ 6.0 dBm
Group Delay Variation	< 10 ns

Mechanical Diagram

Please refer to our **Ordering Guide** to review available radomes and connectors at: https://www.tallysman.com/resource/tallysman-ordering-guide/

Contact NavtechGPS for product details. www.NavtechGPS.com +1-703-256-8900 • 800-628-0885 • info@navtechgps.com