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GPS (Global Positioning System) has enabled accurate, affordable, and almost ubiquitous
positioning and timing. The ever-improving performance of GPS has long fueled the
thought that GPS — and GPS alone — was to be the designated future of radio
positioning and timing. The 2001 Volpe study, and later the 2004 proposed ERNP
(European Radio Navigation Plan), stated otherwise: although very accurate, GPS and
other satellite navigation systems are not considered reliable enough to be used as the
sole-means for safety, environmental, and/or economically critical applications. Those
critical applications need a backup system with dissimilar failure modes. The solution
suggested by the Volpe-report and by the ERNP-proposal is — perhaps rather
surprisingly — an old and almost forgotten radionavigation system: Loran-C. This
system with its high-energy, low-frequency pulses is largely dissimilar to GPS. The
combination of Loran-C and GPS, therefore, has the potential to be far more robust than
either system individually. However, the “official” performance of the 1958 Loran-C
system is no match for the stringent requirements of most modern applications.
Fortunately, this Loran performance reflects the capabilities of outdated technology
rather than the foundations of low-frequency radionavigation. The following question
now arises: What are the fundamental limits of low-frequency radionavigation and how
do they affect potential applications? Loran-C is currently the only operational and
publicly available low-frequency
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Summary

GPS (Global Positioning System) has enabled accurate, affordable, and almost ubiquitous
positioning and timing. This has not only resulted in its wide spread usage, increased
popularity, and numerous new applications, but it has also resulted in an increased
dependency of the Global Navigation Satellite Systems. The ever-improving performance of
GPS has long fueled the thought that GPS — and GPS alone — was to be the designated future
of radio positioning and timing. The 2001 Volpe study, and later the 2004 proposed ERNP
(European Radio Navigation Plan), stated otherwise: although very accurate, GPS and other
satellite navigation systems are not considered reliable enough to be used as the sole-means
for safety, environmental, and/or economically critical applications. Those critical
applications need a backup system with dissimilar failure modes. The solution suggested by
the Volpe-report and by the ERNP-proposal is — perhaps rather surprisingly — an old and
almost forgotten radionavigation system: Loran-C. This system with its high-energy, low-
frequency pulses is largely dissimilar to GPS. The combination of Loran-C and GPS, therefore,
has the potential to be far more robust than either system individually. However, the “official”
performance of the 1958 Loran-C system is no match for the stringent requirements of most
modern applications. Fortunately, this Loran performance reflects the capabilities of outdated
technology rather than the foundations of low-frequency radionavigation. The following
question now arises:

What are the fundamental limits of low-frequency radionavigation and how do

they affect potential applications?

Loran-C is currently the only operational and publicly available low-frequency
radionavigation system with regional coverage. This dissertation, therefore, primarily focuses
on Loran-C although most results will also be applicable to other low-frequency
radionavigation systems. Chapter 2 introduces the system details of Loran-C.

The search for the fundamental limits begins by identifying the potential error sources.
Chapter 3 contains a thorough system analysis, starting with the transmitter, and covering
propagation, antenna, receiver algorithms, and concluding with calculated position and time.

Low-frequency ground waves experience delays as a function of ground conductivity,
topography, seasons, and weather. These propagation delays can cause significant position
errors if left uncompensated. Chapter 4 discusses the use of a differential reference station to
compensate for the temporal fluctuations in propagation. A spatial correction map further
reduces the propagation related positioning errors. The resulting positing accuracy is
potentially sufficient for such situations as the stringent 20 meter, 95% accuracy requirement
of the maritime Harbor Entrance and Approach procedure.



Chapter 5 pays special attention to the H-field antenna; the chapter discusses error sources
such as noise, E-field susceptibility, tuning, and cross talk thoroughly, as well as novel
mitigation techniques and their successful implementation.

Chapter 6 discusses various measurement campaigns that bring the presented theory into
practice. Throughout the Ph.D. research, the author of this work developed a highly accurate
measurement system. The Reeuwijk measurements show the first step with precise dual-
difference measurements; both the temporal domain and the spatial domain reveal local
propagation effects. The land-mobile measurement campaign in Boston expands the
measurement setup further. Simultaneous measurement of both E-field and H-field took place
there allowing unprecedented analysis of re-radiation and an assessment of the applicability of
low-frequency radionavigation in a land-mobile environment. The introduction of differential
corrections and H-field antenna calibration for the Tampa Bay campaign resulted in an
unprecedented measurement performance. Chapter 6 also shows the effect of bridges on
positioning performance quantitatively, and presents the successful results of a unique
re-radiation detection algorithm. This algorithm enables detection of local disturbances
allowing a timely warning of potential erroneous position information. Finally, Chapter 6
shows the achievement of a positioning performance of better than 10 meters with 95%
confidence during a realistic “Harbor Entrance and Approach” (HEA) scenario.

This dissertation concludes with an assessment of the potential of low-frequency

radionavigation, based on the results of the author’s Ph.D. research combined with his
personal views.

Wouter J. Pelgrum
Delft, November 2006
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