

Embedded Navigation Solutions

VN-200 User Manual

Firmware v1.0.0.0

Document Revision 2.02

VectorNav Technologies

10501 Markison Road Dallas, Texas 75238 United States of America

Pł

Contact Info

Phone+1 512 772 3615Emailsupport@vectornav.comWebsitewww.vectornav.com

Document Information

Title	VN-200 User Manual
Subtitle	Inertial Navigation Modules
Document Type	User Manual
Document Number	UM004 v2.02
Document Status	Released

VectorNav Technical Documentation

In addition to our product-specific technical data sheets, the following manuals are available to assist VectorNav customers in product design and development.

- **VN-200 User Manual:** The user manual provides a high-level overview of product specific information for each of our inertial sensors. Further detailed information regarding hardware integration and application specific use can be found in the separate documentation listed below.
- **Hardware Integration Manual:** This manual provides hardware design instructions and recommendations on how to integrate our inertial sensors into your product.
- **Application Notes:** This set of documents provides a more detailed overview of how to utilize many different features and capabilities offered by our products, designed to enhance performance and usability in a wide range of application-specific scenarios.

Document Symbols

The following symbols are used to highlight important information within the manual:

The information symbol points to important information within the manual.

The warning symbol points to crucial information or actions that should be followed to avoid reduced performance or damage to the navigation module.

Technical Support

Our website provides a large repository of technical information regarding our navigation sensors. A list of the available documents can be found at the following address:

http://www.vectornav.com/support

If you have technical problems or cannot find the information that you need in the provided documents, please contact our support team by email or phone. Our engineering team is committed to providing the required support necessary to ensure that you are successful with the design, integration, and operation of our embedded navigation sensors.

Technical Support Contact Info

Email: support@vectornav.com

Phone: +1.512.772.3615

Table of Contents

1	Int	troduction	6
	1.1	PRODUCT DESCRIPTION	6
	1.2	FACTORY CALIBRATION	6
	1.3	OPERATION OVERVIEW	6
	1.4	PACKAGING OPTIONS	7
	1.5	VN-200 PRODUCT CODES	9
2	Sp	ecifications	10
	2.1	VN-200 SURFACE-MOUNT SENSOR (SMD) ELECTRICAL	10
	2.2	VN-200 RUGGED ELECTRICAL	13
	2.3	VN-200 SURFACE-MOUNT SENSOR (SMD) DIMENSIONS	15
	2.4	VN-200 RUGGED DIMENSIONS	16
	2.5	ABSOLUTE MAXIMUM RATINGS	16
	2.6	SENSOR COORDINATE SYSTEM	17
3	VN	N-200 Software Architecture	19
	3.1	IMU SUBSYSTEM	19
	3.2	NAVSTATE SUBSYSTEM	22
	3.3	NAVFILTER SUBSYSTEM	22
	3.4	COMMUNICATION INTERFACE	24
	3.5	COMMUNICATION PROTOCOL	25
4	Ba	asic Communication	26
	4.1	SERIAL INTERFACE	26
	4.2	SPI INTERFACE	26
	4.3	SYSTEM ERROR CODES	30
	4.4	CHECKSUM / CRC	31
5	Us	ser Configurable Binary Output Messages	33
	5.1	AVAILABLE OUTPUT TYPES	33
	5.2	CONFIGURING THE OUTPUT TYPES	33
	5.3	SERIAL OUTPUT MESSAGE FORMAT	38
	5.4	BINARY GROUP 1 – COMMON OUTPUTS	42
	5.5	BINARY GROUP 2 – TIME OUTPUTS	47
	5.6	BINARY GROUP 3 – IMU OUTPUTS	49
	5.7	BINARY GROUP 4 – GPS OUTPUTS	53

	5.8	BINARY GROUP 5 – ATTITUDE OUTPUTS	56
	5.9	BINARY GROUP 6 – INS OUTPUTS	60
6	Sys	stem Module	63
	6.1	COMMANDS	63
	6.2	CONFIGURATION REGISTERS	67
	6.3	STATUS REGISTERS	85
	6.4	FACTORY DEFAULTS	86
	6.5	COMMAND PROMPT	87
7	IM	U Subsystem	89
	7.1	IMU MEASUREMENT REGISTERS	89
	7.2	IMU CONFIGURATION REGISTERS	91
	7.3	FACTORY DEFAULTS	98
	7.4	COMMAND PROMPT	99
8	GP	S Subsystem	101
	8.1	MEASUREMENT REGISTERS	101
	8.2	CONFIGURATION REGISTERS	103
	8.3	FACTORY DEFAULTS	105
	8.4	COMMAND PROMPT	106
9	Att	titude Subsystem	107
	9.1	MEASUREMENT REGISTERS	107
	9.2	CONFIGURATION REGISTERS	117
	9.3	FACTORY DEFAULTS	120
10	INS	S Subsystem	121
	10.1	COMMANDS	121
	10.2	MEASUREMENT REGISTERS	122
	10.3	CONFIGURATION REGISTERS	126
	10.4	FACTORY DEFAULTS	128
11	Ha	rd/Soft Iron Estimator Subsystem	129
	11.1	CONFIGURATION REGISTERS	129
	11.2	STATUS REGISTERS	130
	11.3	FACTORY DEFAULTS	131
	11.4	COMMAND PROMPT	132
12	. Wo	orld Magnetic & Gravity Module	136

12.1 CONFIGURATION REGISTERS	136
12.2 FACTORY DEFAULTS	138
12.3 COMMAND PROMPT	139

1 Introduction

1.1 **Product Description**

The VN-200 is a miniature, surface-mount, high-performance GPS-Aided Inertial Navigation System (GPS/INS). Incorporating the latest solid-state MEMS sensor technology, the VN-200 combines a set of 3-axis accelerometers, 3-axis gyros, 3-axis magnetometer, a barometric pressure sensor, a 50-channel L1 GPS receiver, as well as a 32-bit processor into a miniature surface-mount module. The VN-200 couples measurements from the onboard GPS module with measurements from the onboard inertial sensors to provide position, velocity, and attitude estimates of higher accuracies and with better dynamic performance than a standalone GPS module or Attitude Heading Reference System (AHRS).

1.2 **Factory Calibration**

MEMS inertial sensors are subject to several common sources of error: bias, scale factor, misalignments, temperature dependencies, and gyro g-sensitivity. All VN-200 sensors undergo a rigorous calibration process at the VectorNav factory to minimize these error sources. Compensation parameters calculated during these calibrations are stored on each individual sensor and digitally applied to the real-time measurements. VN-200 sensors are available with two calibration options:

- Standard Calibration single temperature point calibration at 25C, which typically holds performance specifications when operating in an environment with a range of 15C to 35C.
- Thermal Calibration this option extends the calibration process over multiple temperatures to ensure performance specifications are met over the full operating temperature range of -40C to +85C.

1.3 **Operation Overview**

The VN-200 has a built-in microprocessor that runs a robust INS Kalman Filter that estimates the position, velocity, and attitude of the sensor. The VN-200 INS filter couples position and velocity measurements from the onboard GPS module with inertial sensor measurements from the onboard accelerometers, gyroscopes, magnetometers, as well as the barometric pressure sensor. This coupling provides high accuracy attitude estimates when the sensor is subjected to dynamic motion and also provides position and velocity estimates at high output rates.

When the VN-200 is in motion, the VN-200 INS filter determines the attitude by comparing the position and velocity measurements to the onboard accelerometer measurements, and the magnetometer measurements are ignored by the INS filter. Compared to an AHRS, the heading accuracy is improved since the INS filter does not rely on measurements of Earth's background magnetic field and magnetic disturbances no not have an effect on the attitude solution. In addition, the VN-200 pitch and roll estimates are robust to induced accelerations caused by dynamic motion of the sensor. Under static conditions, the heading angle is no longer observable and the VN-200 INS filter reverts back to relying on magnetometer measurements operating in an AHRS mode. The VN-200 includes a feature that automatically transitions between INS and AHRS modes depending on the motion of the sensor and GPS availability in order to provide optimal performance under both static and dynamic conditions.

Outputs from the VN-200 include:

- Position Estimates in the following reference frames:
 - Latitude, Longitude, and Altitude
 - X, Y, Z position in Earth Centered Earth Fixed frame
 - X, Y, Z position in North, East, Down frame
- Velocity Estimates in the following reference frames:
 - X, Y, Z velocities in Earth Centered Earth Fixed frame
 - X, Y, Z velocities in the North, East, Down frame
- Attitude Estimates:
 - o Yaw, Pitch, Roll
 - Quaternions
 - o Rotation Matrix
- INS Filter Uncertainties
 - Position, Velocity, & Attitude
- GPS Time
 - GPS Time of Week
 - UTC Time
- Angular Rate Measurements:
 - Bias compensated angular rates
 - Calibrated gyro measurements
- Acceleration Measurements:
 - Bias compensated acceleration
 - Calibrated acceleration measurements
 - o Gravity vector
- Magnetic Measurements
- Pressure Measurements / Altitude

1.4 **Packaging Options**

The VN-200 is available in two different configurations; a 30-pin surface mount package (VN-200 SMD) and an aluminum encased module (VN-200 Rugged). The VN-200 surface mount package is well suited for customers looking to integrate the VN-200 sensor at the electronics level while the VN-200 Rugged provides a precision enclosure with mounting tabs and alignment holes for a more off-the-shelf solution.

1.4.1 Surface-Mount Package

For embedded applications, the VN-200 is available in a miniature surface-mount package.

Features

- Small Size: 22 x 24 x 3 mm
- Single Power Supply: 3.2 to 5.5 V
- Communication Interface: Serial TTL & SPI
- Low Power Requirement: < 105 mA @ 3.3V

1.4.2 Rugged Package

The VN-200 Rugged consists of the VN-200 sensor installed and calibrated in a robust precision aluminum enclosure.

Features

- Precision aluminum enclosure
- Locking 10-pin connector
- Mounting tabs with alignment holes
- Compact Size: 36 x 33 x 9.5 mm
- Single Power Supply: 3.3 to 17 V
- Communication Interface: Serial RS-232 & TTL

1.4.3 Surface Mount Development Kit

The VN-200 Development Kit provides the VN-200 surfacemount sensor installed onto a small PCB, providing easy access to all of the features and pins on the VN-200. Communication with the VN-200 is provided by USB and RS-232 serial communication ports. A 30-pin header provides easy access to each of the critical pins. The VN-200 Development Kit also includes all of the necessary cabling, documentation, and support software.

Features

- Pre-installed VN-200 Sensor
- Onboard USB->Serial converter
- Onboard TTL->RS-232 converter
- 30-pin 0.1" header for access to VN-200 pins
- Power supply jack 5V (Can be powered from USB)
- Board Size: 76 x 76 x 14 mm

1.4.4 VN-200 Rugged GPS/INS Development Kit

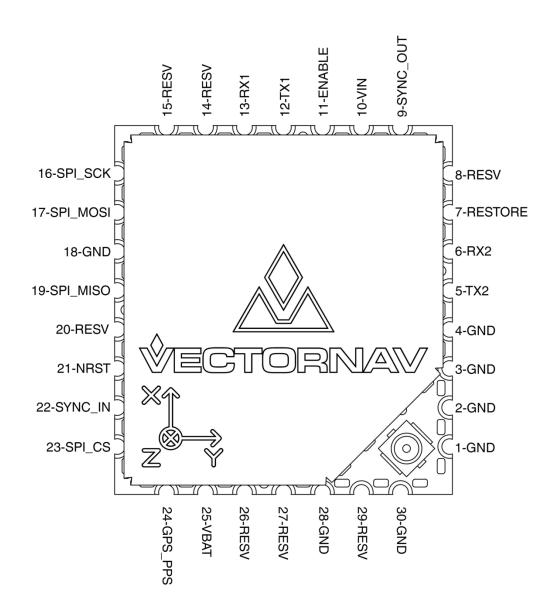
The VN-200 Rugged Development Kit includes the VN-200 Rugged sensor along with all of the necessary cabling required for operation. Two cables are provided in each Development Kit: one for RS-232 communication and a second custom cable with a built in USB converter. The Development Kit also includes all of the relevant documentation and support software.

Features

- VN-200 Rugged Sensor
- 10 ft RS-232 cable
- 6 ft USB connector cable
- 16 ft Magnetic Mount GPS Antenna
- MCX to SMA Antenna Adapter
- Cable Connection Tool
- CD w/Software Development Kit
- User Manual, Quick Start Guide & Documentation
- Carrying Case

1.5 VN-200 Product Codes

VN-200 Options				
Item Code	Sensor Packaging	Calibration Option	Product Type	
VN-200S	Surface Mount Device	Standard at 25C	GPS/INS	
VN-200T	Surface Mount Device	Thermal -40C to +85C	GPS/INS	
VN-200S-DEV	Surface Mount Development Kit	Standard at 25C	GPS/INS	
VN-200T-DEV	Surface Mount Development Kit	Thermal -40C to +85C	GPS/INS	
VN-200S-CR	Rugged Module	Standard at 25C	GPS/INS	
VN-200T-CR	Rugged Module	Thermal -40C to +85C	GPS/INS	
VN-200S-CR-DEV	Rugged Development Kit	Standard at 25C	GPS/INS	
VN-200T-CR-DEV	Rugged Development Kit	Thermal -40C to +85C	GPS/INS	
VN-C200-0310	VN-200 Rugged USB Adapter Cable	N/A	Cable	
VN-C200-0410	VN-200 Rugged Serial Adapter Cable	N/A	Cable	



UM004

2 Specifications

2.1 VN-200 Surface-Mount Sensor (SMD) Electrical

Figure 1 – Pin assignments (top down view).

Pin	Pin Name	Туре	Description
1	GND	Supply	Ground.
2	GND	Supply	Ground.
3	GND	Supply	Ground.
4	GND	Supply	Ground.
5	TX2	Output	Serial UART #2 data output. (sensor)
6	RX2	Input	Serial UART #2 data input. (sensor)
7	RESTORE	Input	During power on or device reset, holding this pin high will cause the module to restore the default factory settings. Internally held low with 10k resistor.
8	RESV	N/A	Reserved for internal use. Do not connect.
9	SYNC_OUT	Output	Time synchronization output signal.
10	VIN	Supply	3.2 - 5.5 V input.
11	ENABLE	Input	Leave high for normal operation. Pull low to enter sleep mode. Internally pulled high with pull-up resistor.
12	TX1	Output	Serial UART #1 data output. (sensor)
13	RX1	Input	Serial UART #1 data input. (sensor)
14	RESV	N/A	Reserved for internal use. Do not connect.
15	RESV	N/A	Reserved for internal use. Do not connect.
16	SPI_SCK	Input	SPI clock.
17	SPI_MOSI	Input	SPI input.
18	GND	Supply	Ground.
19	SPI_MISO	Output	SPI output.
20	RESV	N/A	Reserved for internal use. Do not connect.
21	NRST	Input	Microcontroller reset line. Pull low for > 20 μs to reset MCU. Internally pulled high with 10k.
22	SYNC_IN	Input	Time synchronization input signal.
23	SPI_CS	Input	SPI slave select.
24	GPS_PPS	Input	GPS time pulse. One pulse per second, synchronized on rising edge. Pulse width is 100 ms.
25	VBAT	Supply	Optional GPS RTC battery backup. 1.4 V – 3.6 V input.
26	RESV	N/A	Reserved for internal use. Do not connect.
27	RESV	N/A	Reserved for internal use. Do not connect.
28	GND	Supply	Ground.
29	RESV	N/A	Reserved for internal use. Do not connect.
30	GND	Supply	Ground.

Table 1 – VN-200 SMD Pin Assignments

2.1.1 VN-200 SMD Power Supply

The minimum operating supply voltage is 3.2 V and the absolute maximum is 5.5 V.

2.1.2 VN-200 SMD Serial (UART) Interface

The serial interface on the VN-200 operates with 3V TTL logic.

Table 2 - Serial I/O Specifications

Specification	Min	Typical	Max
Input low level voltage	-0.5 V		0.8 V
Input high level voltage	2 V		5.5 V
Output low voltage	0 V		0.4 V
Output high voltage	2.4 V		3.0 V

2.1.3 VN-200 SMD Serial Peripheral Interface (SPI)

Specification	Min	Typical	Max
Input low level voltage	-0.5 V		0.8 V
Input high level voltage	2 V		5.5 V
Output low voltage	0 V		0.4 V
Output high voltage	2.4 V		3.0 V
Clock Frequency		8 MHz	16 MHz
Close Rise/Fall Time			8 ns

Table 3 - Serial I/O Specifications

2.1.4 VN-200 SMD Reset, Syncln/Out, and Other General I/O Pins

Table 4 - NRST Specifications

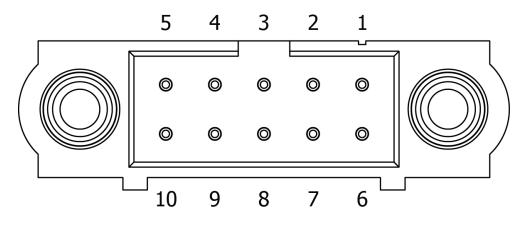
Specification	Min	Typical	Max
Input low level voltage	-0.5 V		0.8 V
Input high level voltage	2 V		5.5 V
Weak pull-up equivalent resistor	30 kΩ	40 kΩ	50 kΩ
NRST pulse width	20 µs		

Table 5 - SyncIn Specifications

Specification	Min	Typical	Max
Input low level voltage	-0.5 V		0.8 V
Input high level voltage	2 V		5.5 V
Pulse Width	100 ns		

Table 6 - SyncOut Specifications

Specification	Min	Typical	Max
Output low voltage	0 V		0.4 V
Output high voltage	2.4 V		3.0 V
Output high to low fall time			125 ns
Output low to high rise time			125 ns
Output Frequency	1 Hz		1 kHz



2.2 VN-200 Rugged Electrical

Table 7 – VN-200 Rugged Pin Assignments

Pin	Pin Name	Description	
1	VCC	+3.3V to +17V	
2	TX1	RS-232 voltage levels data output from the sensor. (Serial UART #1)	
3	RX1	RS-232 voltage levels data input to the sensor. (Serial UART #1)	
4	SYNC_OUT	Dutput signal used for synchronization purposes. Software configurable o pulse when ADC, IMU, or attitude measurements are available.	
5	GND	Ground	
6	RESTORE	If high at reset, the device will restore to factory default state. Internally held low with 10k resistor.	
7	SYNC_IN	Input signal for synchronization purposes. Software configurable to either synchronize the measurements or the output with an external device.	
8	TX2_TTL	Serial UART #2 data output from the device at TTL voltage level (3V).	
9	RX2_TTL	Serial UART #2 data into the device at TTL voltage level (3V).	
10	RESV	This pin should be left unconnected.	

Figure 2 - VN-200 Rugged External Connector

2.2.1 VN-200 Rugged Power Supply

The power supply input for the VN-200 Rugged is 3.3 to 17 V DC.

2.2.2 VN-200 Rugged Serial UART Interface

Table 8 - Serial I/O Specifications

Specification	Min	Typical	Max
Input low level voltage	-25 V		
Input high level voltage			25 V
Output low voltage	-5.0 V	-5.4 V	
Output high voltage	5.0 V	5.5 V	
Output resistance	300 Ω	10 MΩ	
Data rate			1 Mbps
Pulse slew		300 ns	

2.2.3 VN-200 Rugged Reset, SyncIn/Out, and Other General I/O Pins

Table 9 - NRST Specifications

Specification	Min	Typical	Max
Input low level voltage	-0.5 V		0.8 V
Input high level voltage	2 V		5.5 V
Weak pull-up equivalent resistor	30 kΩ	40 kΩ	50 kΩ
NRST pulse width	20 µs		

Table 10 - SyncIn Specifications

Specification	Min	Typical	Max
Input low level voltage	-0.5V		0.8V
Input high level voltage	2V		5.5V
Pulse Width	100 ns		

Table 11 - SyncOut Specifications

Specification	Min	Typical	Max
Output low voltage	0 V		0.4 V
Output high voltage	2.4 V		3.0 V
Output high to low fall time			125 ns
Output low to high rise time			125 ns
Output Frequency	1 Hz		1 kHz

2.3 VN-200 Surface-Mount Sensor (SMD) Dimensions

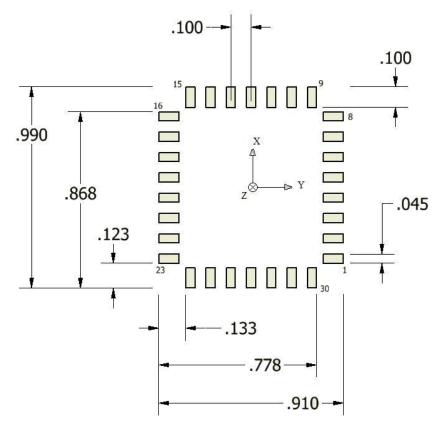


Figure 3 – VN-200 PCB Footprint*

* Measurements are in inches

2.4 VN-200 Rugged Dimensions

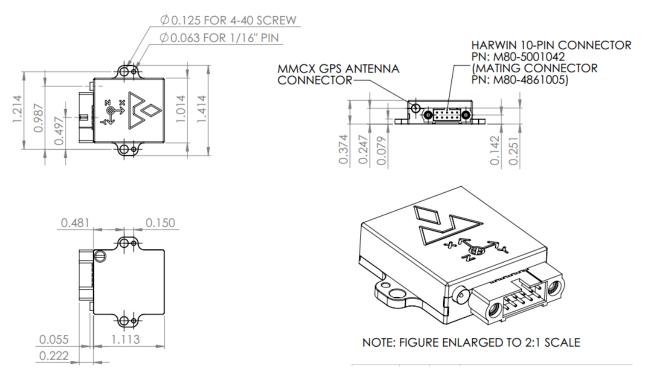


Figure 4 - VN-200 Rugged Dimensions

* Measurements are in inches

2.4.1 Rugged Connector Type

The main connector used on the VN-200 Rugged is a 10-pin Harwin M80-5001042. The mating connector used on the cable assemblies provided by VectorNav for use with the VN-200 Rugged is a Harwin M80-4861005. The RF connector used on the VN-200 Rugged is a female MMCX jack.

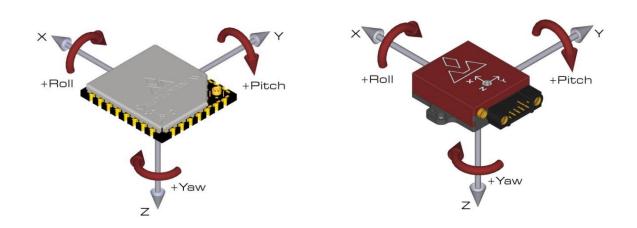
2.5 Absolute Maximum Ratings

Table 12 –	SMD	Absolute	Maximum	Ratings
------------	-----	----------	---------	---------

Specification	Min	Max
Input Voltage	-0.3 V	5.5 V
Operating Temperature	-40 C	85 C
Storage Temperature	-40 C	85 C

Table 13 – Rugged	Absolute	Maximum	Ratings
-------------------	----------	---------	---------

Specification	Min	Max
Input Voltage	-0.3 V	17 V
Operating Temperature	-40 C	85 C
Storage Temperature	-40 C	85 C

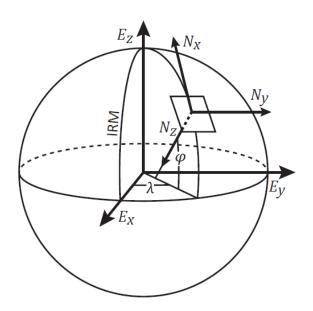


2.6 Sensor Coordinate System

2.6.1 Sensor Coordinate Frame

The VN-200 uses a right-handed coordinate system. A positive yaw angle is defined as a positive righthanded rotation around the Z-axis. A positive pitch angle is defined as a positive right-handed rotation around the Y-axis. A positive roll angle is defined as a positive right-handed rotation around the X-axis. The axes direction with respect to the VN-200 module is shown in Figure 5.

Figure 5 - VN-200 Coordinate System


2.6.2 Earth Centered Earth Fixed Frame

The VN-200 position and velocity estimates can be output in the Earth-Centered-Earth-Fixed (ECEF) Frame defined as follows (E_x , E_y , E_z):

- Right-handed, Cartesian, non-inertial frame with origin located at the center of Earth;
- Fixed to and rotates with Earth;
- Positive X-axis aligns with the WGS84 X-axis, which aligns with the International Earth Rotation and Reference Systems Service (IERS) Reference Meridian (IRM);
- Positive Z-axis aligns with the WGS84 Z-axis, which aligns with the IERS Reference Pole (IRP) that points towards the North Pole;
- Positive Y-axis aligns with the WGS84 Y-axis, completing the right-handed system.

Figure 6 - ECEF Frame

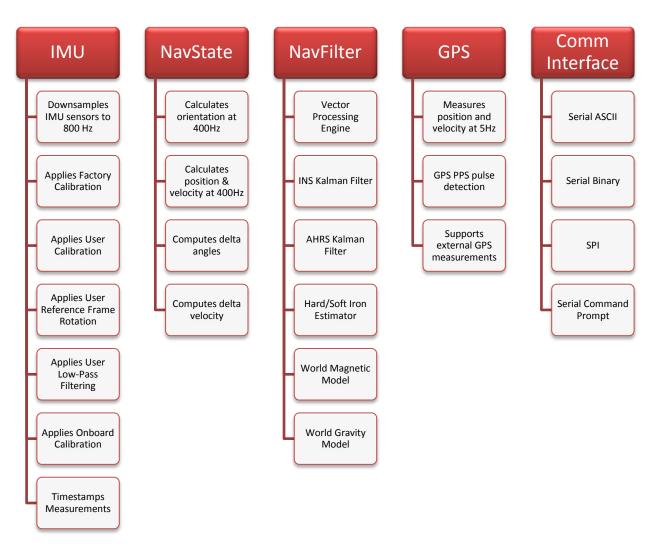
2.6.3 Latitude, Longitude, Altitude

The VN-200 position estimates can be output in Latitude, Longitude, Altitude coordinates defined as follows (ϕ , λ , h):

- Non-inertial, geodetic frame with origin located at the surface of Earth (WGS84 ellipsoid);
- Latitude is defined as the angle from the equatorial plane to a line normal to the surface of the WGS84 ellipsoid at the location of the VN-200;
- Longitude is defined as the east-west angular displacement measured positive to the east from the IERS Reference Meridian to the location of the VN-200;

Altitude is defined as the distance from the WGS84 ellipsoid to the location of the VN-200 in a direction normal to the ellipsoid.

2.6.4 North-East-Down Frame


The VN-200 velocity estimates can be output in the North-East-Down (NED) coordinate frame defined as follows (N_x, N_y, N_z) :

- Right-handed, Cartesian, non-inertial, geodetic frame with origin located at the surface of Earth (WGS84 ellipsoid);
- Positive X-axis points towards North, tangent to WGS84 ellipsoid;
- Positive Y-axis points towards East, tangent to WGS84 ellipsoid;
- Positive Z-axis points down into the ground completing the right-handed system.

3 VN-200 Software Architecture

The software architecture internal to the VN-200 includes five separate subsystems. These subsystems are the IMU, the NavState, the NavFilter, the GPS, and the Communication Interface. The high-level functions performed by these subsystems are outlined below. This chapter describes these functions performed by these subsystems in more detail and describes which of the various measurement outputs originate from each of these corresponding subsystems.

3.1 IMU Subsystem

The IMU subsystem runs at the highest system rate, described from this point forward as the IMU Rate (defaults to 800Hz). It is responsible for collecting the raw IMU measurements, applying a static, user, and dynamic calibration to these measurements, and optionally filtering the individual sensor measurements for output. The coning and sculling integrals also are calculated by the IMU subsystem at the full IMU Rate. The IMU subsystem is also responsible for time stamping the IMU measurements to internal system time, and relative to both the SyncIn and the GPS PPS signal.

3.1.1 Magnetometer

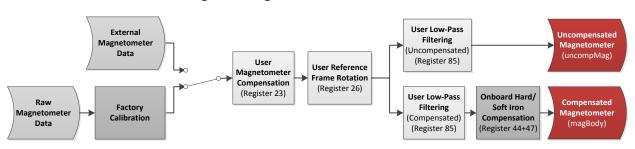
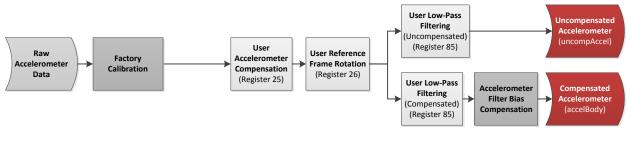
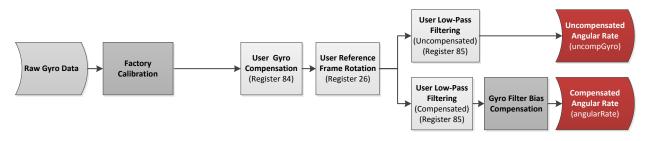



Figure 8 - Magnetometer IMU Measurements


3.1.2 Accelerometer

3.1.3 **Gyro**

3.1.4 **Raw IMU Measurements**

The raw IMU measurements are collected from the internal MEMS at the highest rate available for each individual sensor. For the gyro and accelerometer, the measurements are down-sampled to the IMU Rate.

3.1.5 Factory Calibration

Each VN-200 sensor is tested at the factory at multiple known angular rates, accelerations, and magnetic field strengths to determine each sensor's unique bias, scale factor, axis alignment, and temperature dependence. The calibration coefficients required to remove these unwanted errors are permanently stored in flash memory on each sensor. At the IMU Rate, these calibration coefficients are applied to the raw IMU measurements, to correct for and remove these known measurement errors. For

thermally calibrated units the onboard temperature sensor is used to remove the measurement temperature dependence. The output of the factory calibration stage is referred to as the calibrated (but un-compensated) IMU measurements.

3.1.6 User Calibration

The VN-200 provides the user with the ability to apply a separate user calibration to remove additional bias, scale factor, and axis misalignments. The user calibration is applied after the factory calibration, and can be used to optionally fine tune the calibration for each of the individual sensors. The user calibration is optional and in most cases not required for normal operation.

3.1.7 User Reference Frame Rotation

The user reference frame rotation provides the user with the ability to apply a rigid body rotation to each of the sensor outputs. This can be used to transform the coordinate system of the onboard sensors into any other coordinate frame of the user's choice. Since this transformation is applied to the IMU measurements prior to their use in the onboard attitude estimation algorithms, applying a user reference frame rotation will not only change the output coordinates for the IMU measurements, it will also change the IMU body frame for all subsequent attitude estimation calculations.

3.1.8 User Low-Pass Filtering

The VN-200 also provides a means (see Register 85) to apply low-pass filtering to the output compensated IMU measurements. It is important to note that the user low-pass filtering only applies to the output compensated IMU measurements. All onboard Kalman filters in the NavFilter subsystem always use the unfiltered IMU measurements after the User Reference Frame Rotation (Register 26) has been applied. As such the onboard Kalman filtering will not be affected by the user low-pass filter settings. The user low-pass filtering can be used to down-sample the output IMU measurements to ensure that information is not lost when the IMU measurements are sampled by the user at a lower rate than the internal IMU Rate.

3.1.9 **Timestamp Measurements**

All onboard measurements captured by the IMU subsystem are time stamped relative to several internal timing events. These events include the monotonically increasing system time (time since startup), the time since the last SyncIn event, and the time since the last GPS PPS pulse. These timestamps are recorded with microsecond resolution and ~10 microsecond accuracy relative to the onboard temperature compensated crystal oscillator. The onboard oscillator has a timing accuracy of ~20ppm over the temperature range of -40C to 80C.

3.1.10 **Coning & Sculling**

The IMU subsystem is also responsible for computing and accumulating the coning and sculling integrals. These integrals track the delta angle and delta velocity accumulated from one time step to another. The coning and sculling integrals are reset each time the delta angle and/or delta velocity are outputted (asynchronously) or polled from the delta theta and velocity register (Register 80). Between output and polling events, the coning and sculling integration are performed by the IMU subsystem at the IMU Rate.

3.2 NavState Subsystem

The NavState subsystem generates a continuous reliable stream of low-latency, low-jitter state outputs at a rate fixed to the IMU sample rate. The state outputs include any output such as attitude, position, and velocity, which is not directly measureable by the IMU and hence must be estimated by the onboard Kalman filters. The NavState runs immediately after, and in sync with the IMU subsystem, at a rate divisible into the IMU Rate. This rate is referred to as the NavState Rate (default 400Hz). The NavState decouples the rate at which the state outputs are made available to the user, from the rate at which they are being estimated by the onboard Kalman filters. This is very important for many applications which depend on low-latency, low-jitter attitude, position, and velocity measurements as inputs to their control loops. The NavState guarantees the output of new updated state information at a rate fixed to the IMU Rate with very low latency and output jitter. The NavState also provides the ability for the VN-200 to output estimated states at rates faster than the rate of the onboard Kalman filters, which may be affected by system load and input measurements availability.

3.2.1 NavState Measurements

The measurements shown below are calculated by the NavState subsystem and are made available at the NavState Rate (default 400 Hz).

NavState Outputs
Attitude
(Yaw, Pitch, Roll, Quaternion, DCM)
Position
(LLA, ECEF)
Velocity
(NED, ECEF, Body)
Delta Angle
Delta Velocity

3.3 NavFilter Subsystem

The NavFilter subsystem consists of the INS Kalman filter, the Vector Processing Engine (VPE), and its collection of other Kalman filters and calculations that run at a lower rates than the NavState. Most high level states such as the estimated attitude, position, and velocity are passed from the NavFilter to the NavState, and as such are made available to the user at the NavState rate. There are a handful of outputs however that will only update at the rate of the NavFilter, some of which are listed below.

NavFilter Outputs
Attitude Uncertainty
Position & Velocity Uncertainty
Gyro & Accel Filter Biases
Mag & Accel Disturbance Estimation
Onboard Magnetic Hard & Soft Iron
Estimation
World Magnetic & Gravity Model

3.3.1 INS Kalman Filter

The INS Kalman filter consists of an Extended Kalman filter which nominally runs at the NavFilter rate (default 200 Hz). The INS Kalman filter uses the accelerometer, gyro, GPS, and (at startup) the

magnetometer to simultaneously estimate the full quaternion based attitude solution, the position and velocity, as well as the time varying gyro, accelerometer, and barometric pressure sensor biases. The output of the INS Kalman filter is passed to the NavState, allowing for the attitude, position, and velocity to be made available at the higher fixed rate of the NavState. The INS Kalman filter provides superior attitude estimation performance compared to the AHRS Kalman filter due to its inherent ability to account for dynamic motion through its use of the GPS measurements. As such when GPS is available the VN-200 will utilize the INS Kalman filter for attitude estimation.

3.3.2 Vector Processing Engine

The Vector Processing Engine (VPE) is a collection of sophisticated algorithms which provide real-time monitoring and simultaneous estimation of the attitude as well as the uncertainty of the input measurements used by the attitude estimation algorithm. By estimating its own input measurement uncertainty the VPE is capable of providing significantly improved performance when compared to traditional statically tuned Kalman Filters. The estimated measurement uncertainty is used to in real-time adaptively tune the onboard Kalman filters. This adaptive tuning eliminates the need in most cases for the user to perform any custom filter tuning for different applications.

3.3.3 AHRS Kalman Filter

Since the INS Kalman filter relies upon a continuous stream of GPS measurements to operate, the VN-200 supports automatic transition from INS to AHRS attitude estimation modes. In situations when GPS measurements are not available, the VN-200 will automatically begin to use the magnetometer and the accelerometer to estimate attitude. The transition is handled automatically by the VN-200, and performed in a seamless fashion, thus eliminating any potential jump discontinuities from appearing in the attitude or angular rate output when the transition to and from AHRS/INS mode is performed. Optionally the user can also manually select between using the INS or AHRS attitude estimation modes. The type of estimation algorithm used is controlled by the INS Scenario field in the INS basic configuration register (Register 67).

3.3.4 Hard/Soft Iron Estimator

The NavFilter subsystem also includes a separate EKF which provides real-time estimation of the local magnetic hard and soft iron distortions. Hard and soft iron distortions are local magnetic field distortions created by nearby ferrous material which moves with the sensor (attached to the same vehicle or rigid-body as the sensor). These ferrous materials distort the direction and magnitude of the local measured magnetic field, thus negatively impacting the ability of an AHRS to reliably and accurately estimate heading based on the magnetometer measurements. To remove the unwanted effect of these materials, a hard & soft iron calibration needs to be performed which requires rotating the sensor around in multiple circles while collecting magnetic data for off-line calculation of the magnetic hard & soft iron calibration coefficients. This calibration can be very time consuming, and might not be possible for some applications. The onboard hard/soft iron estimator runs in the background without requiring any user intervention. For many applications this simplifies the process for the end user, and allows for operation in environments where the hard/soft iron may change slowly over time. On the VN-200 the onboard hard/soft iron estimator is turned off by default, and can be configured or enabled by the user the Magnetic Calibration Control Register (see Section 11.1.1).

3.3.5 World Magnetic Model

The world magnetic model (WMM) is a large spatial-scale representation of the Earth's magnetic field. The internal model used on the VN-200 is consistent with the current WMM2010 model which consist of a spherical-harmonic expansion of the magnetic potential of the geomagnetic field generated in the Earth's core. By default the world magnetic model on the VN-200 is enabled, and automatically uses the estimated position from the INS to directly set the reference magnetic field strength. Alternatively the world magnetic model can be manually used to calculate the magnetic field strength for a given latitude, longitude, altitude, and date which is then subsequently used as the fixed magnetic field reference strength. Control of the world magnetic model is performed using the Reference Vector Configuration register (Register 83).

3.3.6 World Gravity Model

The world gravity model (WGM) is a large spatial-scale representation of the Earth's gravity potential as a function of position on the globe. The internal model used on the VN-200 is consistent with the Earth Gravity Model (EGM96), which consist of a spherical-harmonic expansion of the Earth's geopotential. By default the world gravity model on the VN-200 is enabled, and automatically is set based on the estimated INS position. Control of the world gravity model is performed using the Reference Vector Configuration register (Register 83).

3.4 **Communication Interface**

The VN-200 provides three separate communication interfaces; two physically separate serial ports and one SPI (Serial Peripheral Interface) bus.

3.4.1 Serial Interface

The serial interface consists of two physically separate bi-directional UARTs. Each UART supports baud rates from 9600 bps up to a maximum of 921600 bps.

The surface mount version of the VN-200 offers both UARTS with 3V TTL voltage level inputs and outputs.

The rugged version includes an onboard TTL to RS-232 level shifter, thus at the 10-pin connector one serial port is offered with RS-232 voltages levels (Serial 1), while the other serial port (Serial 2) remains at 3V TTL logic levels.

It is important to note that the ability to update the firmware using the onboard bootloader is only supported on the serial port 1 interface. It is highly recommended that if serial port 1 is not used for normal operation, a means of accessing it is designed into the product to support future firmware updates.

3.4.2 SPI Interface

The SPI interface consists of a standard 4-wire synchronous serial data link which is capable of high data rates up to 16 Mbps. The VN-200 operates as slave on the bus enabled by the master using the slave select (SPI_CS) line. See section 4.2 for more information on the operation of the SPI interface.

3.5 **Communication Protocol**

The VN-200 utilizes a simple command based communication protocol for both the serial and SPI interfaces. For the serial interface an ASCII protocol is used for command and register polling, whereas the SPI interfaces utilizes a binary protocol. Optionally the serial interface also provides support for streaming real-time sensor measurements using binary output packets.

3.5.1 Serial ASCII

On the serial interface a full ASCII protocol provides support for all commands, and register polling. The ASCII protocol is very similar to the widely used NMEA 0183 protocol supported by most GPS receivers, and consists of comma delimited parameters printed in human readable text. Below is an example command request and response on the VN-200 used to poll the attitude (register 8) using the ASCII protocol.

Figure 11 - Example Serial Request

\$VNRRG,8*4B

Figure 12 - Example Serial Response

\$VNRRG,08,-114.314,+000.058,-001.773*5F

Chapter 6 provides a list of all commands and registers supported by each software subsystem on the VN-200. For each command and register an example ASCII response is given to demonstrating the ASCII formatting.

3.5.2 Serial Binary

The serial interface offers support for streaming sensor measurements from the sensor at fixed rates using simple binary output packets. These binary output packets provide a low-overhead means of streaming high-speed sensor measurements from the device minimizing both the required bandwidth and the necessary overhead required to parse the incoming measurements for the host system. Section 5 provides a detailed overview on how to parse and configure the binary output messages on the serial interface.

3.5.3 Serial Command Prompt

A simple command prompt is also provided on the serial interface which provides support for advanced device configuration and diagnostics. The serial command prompt is an optional feature that is designed to provide more detailed diagnostic view of overall system performance than is possible using normal command & register structure. It is strictly intended to be used by a human operator, using a simple serial terminal to type commands to the device using a serial terminal, and is not designed to be used programmatically. Each software subsystem described in Chapter 6 provides information on the diagnostic commands supported by the serial command prompt at the end of each subsystem section.

4 Basic Communication

The VN-200 module supports two communication interfaces: serial and SPI. On the serial interface, the module communicates over a universal asynchronous receiver/transmitter (UART) and uses ASCII text for its command and data format. On the SPI interface, the VN-200 module communicates as a slave device on a Serial Peripheral Interface (SPI) data bus and uses a binary command and data format. Both interfaces support the complete command set implemented by the module. A general overview of the command format for each interface is given in the next two sections and formatting specific to each command and associated parameters is provided in the protocol and register sections.

4.1 Serial Interface

On the serial interface, the VN-200 uses ASCII text for its command format. All commands start with a dollar sign, followed by a five character command, a comma, command specific parameters, an asterisk, a checksum, and a newline character. An example command is shown below.

\$VNRRG,11*73

4.2 SPI Interface

The VN-200 supports a Serial Peripheral Interface (SPI) communication interface. The SPI interface consists of synchronous serial communication interface where devices communicate in a master/slave mode. The VN-200 operates as a slave while the device communicating with the VN-200 will act as a master. The master provides a clock to the slave which synchronizes the data transfer to the rising and falling edge of the clock signal. Due to its synchronous communication, high data transfer rates, and master/slave operation, the SPI communication interface is ideal for board-level communication over short distances since it doesn't require a complex software protocol stack and is fairly straightforward to program against on embedded devices.

4.2.1 SPI Hardware Requirements

Four hardware lines are required to implement a SPI interface with the VN-200; a clock (SPI_SCK), two data lines (SPI_MOSI and SPI_MISO), and a slave select pin (SPI_CS). The master is responsible for driving both the clock signal and the slave select lines. The slave select line should be pulled low when the master wants to communicate with the slave. If multiple slave devices are used on the same bus, then each slave will have its own dedicated slave select line, while sharing the clock and data lines. The VN-200 will leave the SPI_MISO line in a high impedance state while the SPI_CS line is high, enabling communication with other slave devices on the same SPI bus. When the master is finished communicating with the slave the slave select line is pulled high. The clock line should idle high when not in use. The SPI_MISO and SPI_MOSI pins should both transition between logic states on the falling edge of the SPI_SCK clock signal. Data on both the SPI_MISO and SPI_MOSI should be sampled on the rising edge of the SPI_SCK line. The VN-200 uses 3V digital logic for the SPI interface. If you are interfacing with a 5V system, it is recommended that you use a logic level translation circuit to ensure reliable communication.

	SPI Master Settings
Slave Select	Active Low
Clock Polarity	Idle High (CPOL=1)
Clock Phase	Sample second clock edge (CPHA=1)
Data Format	Most significant bit first (MSB)
Byte Order	Least significant byte first (little-endian)

4.2.2 Software Requirements

Communication with the VN-200 over SPI is conducted with multiple transactions. A transaction for the purpose of this document is defined as a single operation, such as reading or writing to a register on the VN-200 or issuing a command such as requesting a device reset. A single transaction consists to two separate data packets sent to the VN-200. Each packet consists of a four byte header followed by a data payload. The header for the packet differs depending upon whether it is a request packet or a response packet. For each packet sent to the VN-200 the slave select line (SPI_CS) should be pulled low at the beginning of the packet and pulled high at the end.

Figure 13 - Packet Headers

4-Byte Request	Header (MOSI)		
Command ID	Argument	0x00	0x00
4-Byte Respons	e Header (MISO)		

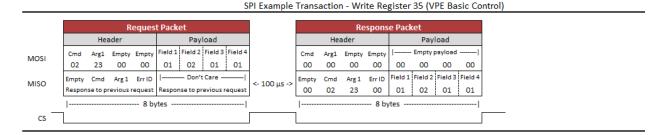
4.2.3 SPI Example Commands

The sections that follow provided some example SPI transactions for the various types of commands available on the VN-200.

SPI Read Register Example

Below is an example of a single transaction with the VN-200 to read register 5.

								SPI E	kampl	e Trar	isacti	on - R	ead R
	Re	eques	t Pack	et				Re	spons	e Pacl	æt		
	Header		Header		Header			Payload					
MOSI	Cmd	Arg1	Empty	Empty		Cmd	Arg1	Empty	Empty	I	Empty	payload	
WOSI	01	05	00	00		00	00	00	00	00	00	00	00
MISO	Empty	Cmd	Arg 1	ErrID	<- 100 µs ->	Empty	Cmd	Arg 1	Err ID			2	
WII3O	Response to previous request <- 100 µs			<- 100 μS ->	00	01	05	00	00	C2	01	00	
4 bytes					8 bytes								
CS						1							

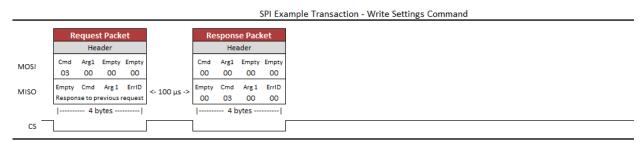

The first packet is the request packet and consists of the master sending out the MOSI line a four byte header with no payload. The first byte in the header has the command ID of 1, which corresponds to a read register request. The second byte is the argument. In the case of the read register command this corresponds to the register ID, which in this case is register 5. The next two bytes are always zero in the header. After this packet is sent the master should raise the slave select line (SPI_CS) and wait at least 50 microseconds before issuing the respond packet. During this time the VN-200 will process the read

register request and place the requested data in its SPI output buffer. On the response packet the master should clock in N bytes of zeroes on the MOSI line, where N is equal to 4 plus the size of the register being read, which in this example is register 5 (4 bytes). The header for packets being received from the VN-200 has a different structure with the first byte always being zero. The second and third byte in the header is the command ID and the argument (register ID) of the response. The fourth byte in the header is the error code. If an error occurred while attempting to service the request the VN-200 will issue a non-zero error code in this byte with no payload. In the payload of the response packet the four bytes received correspond to the value of register 5 which in this case is 115200. As you can see from the example multi-byte values are sent in little endian format with the least significant byte sent first (0h01C200 = 115200).

SPI Write Register Example

Below is an example of a write register transaction. In this example the values of {1, 2, 1, 1} are being written to the four fields in the VPE Control Register (Register 35).

In the case of writing to a register, the values to be loaded into the register are in the payload of the request packet. The payload of the response packet contains the contents of the register after the write register command has been processed. In the case that no error occurred the payload of the response packet should be the same as the request. Because of this it is sufficient to just clock in only four bytes on the response packet to verify that the write register took effect, which is indicated by a zero error code.


SPI Read Register Example – Floating Point Registers

								SPI E	xampl	e Tra	nsacti	on - R	ead R	egist	er 8 ()	'aw, P	itch, F	loll)			
	Request Packet			Response Packet																	
	Header				Header									Pay	load						
MOSI	Cmd	Arg1	Empty	Empty		Cmd	Arg1	Empty	Empty						s to rea						
WUSI	01	08	00	00		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
MISO	Empty	Cmd	Arg 1	ErrID	<- 100 µs ->	Empty	Cmd	Arg 1	Err ID		Yaw = -1	51.69768			Pitch = +1	.275028	38	R	oll = +0.6	603076	16
WI SO	Respon	ise to pi	revious r	equest	<- 100 μS ->	00	01	08	00	9B	B2	21	C3	25	34	A3	3F	33	63	1A	3F
	4 bytes			-		16 bytes															
cs —	1																				
					1																

The above examples show a transaction involving reading a register with floating point values. In this case Register 8 is read which contains the sensor attitude (Yaw, Pitch, & Roll). The floating point values are stored as 32-bit IEEE floating point numbers in little endian byte order.

SPI Write Settings Command Example

The above example shows an example transaction that consists of issuing a write settings command to the VN-200. The different commands accepted by the VN-200 are listed in Section 6.1.

SPI Transaction Error Example

							SPI E	xampl	e Trar	nsacti	on - Ei	rror R	espon	se (At	tempt	to W	rite to Read	l-Only	Regi	ster)	
		Request Packet											Response Packet								
		Header Payload							1	Header											
MOSI	Cmd Arg1 Empty Empty			MagX = +1.0			MagY = +2.0			MagZ = +3.0				Cmd	Arg1	Empty	Empty				
WUSI	02	12	00	00	00	00	80	3F	00	00	00	40	00	00	40	40		02	12	00	00
14150	Empty	Cmd	Arg 1	Err ID		Don't Care										Empty	Cmd	Arg 1	ErrID		
MISO	Respon	Response to previous request Previous Packet Payload											<- 100 µs ->	00	02	12	08				
	16 bytes 4 bytes																				
cs —	1																	1			

The above example demonstrates what will happen when an error occurs during a transaction. In this case the user attempted to write to a read-only register. The fourth byte of the response packet header shows an Error ID of 8 was returned, which corresponds to an Invalid Register. The different error codes are listed in Table 14.

4.3 System Error Codes

In the event of an error, the VN-200 will output \$VNERR, followed by an error code. The possible error codes are listed in the table below with a description of the error.

Error Name	Code	Description
Hard Fault	1	If this error occurs, then the firmware on the VN-200 has experienced a
		hard fault exception. To recover from this error the processor will force
		a restart, and a discontinuity will occur in the serial output. The
		processor will restart within 50 ms of a hard fault error.
Serial Buffer Overflow	2	The processor's serial input buffer has experienced an overflow. The
		processor has a 256 character input buffer.
Invalid Checksum	3	The checksum for the received command was invalid.
Invalid Command	4	The user has requested an invalid command.
Not Enough Parameters	5	The user did not supply the minimum number of required parameters
		for the requested command.
Too Many Parameters	6	The user supplied too many parameters for the requested command.
Invalid Parameter	7	The user supplied a parameter for the requested command which was invalid.
Invalid Register	8	An invalid register was specified.
Unauthorized Access	9	The user does not have permission to write to this register.
Watchdog Reset	10	A watchdog reset has occurred. In the event of a non-recoverable error
		the internal watchdog will reset the processor within 50 ms of the error.
Output Buffer Overflow	11	The output buffer has experienced an overflow. The processor has a
		2048 character output buffer.
Insufficient Baud Rate	12	The baud rate is not high enough to support the requested
		asynchronous data output at the requested data rate.
Error Buffer Overflow	255	An overflow event has occurred on the system error buffer.

4.4 Checksum / CRC

The serial interface provides the option for either an 8-bit checksum or a 16-bit CRC. In the event neither the checksum nor the CRC is needed, they can be turned off by the user.

4.4.1 **Checksum Bypass**

When communicating with the sensor using a serial terminal, the checksum calculation can be bypassed by replacing the hexadecimal digits in the checksum with uppercase X characters. This works for both the 8-bit and 16-bit checksum. An example command to read register 1 is shown below using the checksum bypass feature.

\$VNRRG,1*XX

4.4.2 **8-bit Checksum**

The 8-bit checksum is an XOR of all bytes between, but not including, the dollar sign (\$) and asterisk (*). All comma delimiters are included in the checksum calculation. The resultant checksum is an 8-bit number and is represented in the command as two hexadecimal characters. The C function snippet below calculates the correct checksum.

Example C Code

```
// Calculates the 8-bit checksum for the given byte sequence.
unsigned char calculateChecksum(unsigned char data[], unsigned int length)
{
    unsigned int i;
    unsigned char cksum = 0;
    for(i=0; i<length; i++) {
        cksum ^= data[i];
    }
    return cksum;</pre>
```


4.4.3 **16-bit CRC**

For cases where the 8-bit checksum doesn't provide enough error detection, a full 16-bit CRC is available. The VN-200 uses the CRC16-CCITT algorithm. The resultant CRC is a 16-bit number and is represented in the command as four hexadecimal characters. The C function snippet below calculates the correct CRC.

Example C Code

```
// Calculates the 16-bit CRC for the given ASCII or binary message.
unsigned short calculateCRC(unsigned char data[], unsigned int length)
{
    unsigned int i;
    unsigned short crc = 0;
    for(i=0; i<length; i++) {
        crc = (unsigned char)(crc >> 8) | (crc << 8);
        crc ^= data[i];
        crc ^= (unsigned char)(crc & 0xff) >> 4;
        crc ^= crc << 12;
        crc ^= (crc & 0x00ff) << 5;
    }
    return crc;
}</pre>
```


5 User Configurable Binary Output Messages

The VN-200 supports 3 separate user configurable binary output messages available on the serial interface. Each message can be configured by the user to contain any of the available output measurement types from the IMU, NavState, NavFilter, or the GPS subsystems. The device can be configured to asynchronously output each message at a fixed rate based upon a divisor of the IMU internal sampling rate (IMU Rate).

5.1 Available Output Types

All real-time measurements either measured or estimated by the VN-200 are available using the user output messages. The different output types are organized into 6 separate output groups. The first group is a combination of the most common outputs from the remaining 5 groups. The other 5 groups are shown below.

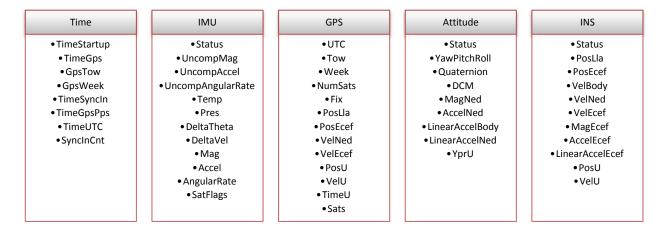


Figure 14 – Binary Outputs

5.2 **Configuring the Output Types**

Configuration of the 3 output messages is performed using the User Output Configuration Registers (Register 75-79). There are 3 separate configuration registers, one for each available output message. Section 6.2.11 describes in more detail the format for these registers. In each of these configuration registers the user can select which output types they want the message to include by specifying the OutputGroup and the OutputFields parameters.

5.2.1 **OutputGroup**

The OutputGroup parameter is a single byte where the bits select which output groups are active in the message.

Name	Bit Offset	Description
Output Group 1	0	Common Group
Output Group 2	1	Time Group
Output Group 3	2	IMU Group
Output Group 4	3	GPS Group
Output Group 5	4	Attitude Group
Output Group 6	5	INS Group

Output group 7 is not used on the VN-200. The bit for this unused output group must be set to zero.

5.2.2 **OutputFields**

The OutputFields is an array of 16-bit words, with the array length equal to the number of active groups in the OutputGroup. The OutputFields selects which output fields are active for each output group.

Bit Offset	Group 1 Common	Group 2 Time	Group 3 IMU	Group 4 GPS	Group 5 Attitude	Group 6 INS
0	TimeStartup	TimeStartup	ImuStatus	UTC	VpeStatus	InsStatus
1	TimeGps	TimeGps	UncompMag	Tow	YawPitchRoll	PosLla
2	TimeSyncIn	GpsTow	UncompAccel	Week	Quaternion	PosEcef
3	YawPitchRoll	GpsWeek	UncompGyro	NumSats	DCM	VelBody
4	Quaternion	TimeSyncIn	Temp	Fix	MagNed	VelNed
5	AngularRate	TimeGpsPps	Pres	PosLla	AccelNed	VelEcef
6	Position	TimeUTC	DeltaTheta	PosEcef	LinearAccelBody	MagEcef
7	Velocity	SyncInCnt	DeltaVel	VelNed	LinearAccelNed	AccelEcef
8	Accel		Mag	VelEcef	YprU	LinearAccelEcef
9	Imu		Accel	PosU		PosU
10	MagPres		AngularRate	VelU		VelU
11	DeltaTheta		SensSat	TimeU		
12	InsStatus			SvStat		
13	SyncInCnt					
14	TimeGpsPps					
15						

Below is a list of the available output fields for each output group.

5.2.3 Setup the Configuration Register

Once you have determined the desired outputs for your output messages, you will need to configure the User Output Message Configuration Registers (Register 75 - 77). These registers are described in detail in Section 6.2.11, however for reference the format of the register is shown below.

		E	Binary C	Dutput Register 1-3						
	Register ID :	75-77	Fir	mware: v1.0.0.0 Access: Read / Write						
	Comment :	These registers allow the user to construct a custom output message that contains a collection of desired estimated states and sensor measurements.								
	Size (Bytes):	6-22								
Examp	ole Response:	\$VNWRG,75,2,4,1,8*2	XX							
Offset	Name	Format	Unit	Description						
0	AsyncMode	uint16	-	Selects whether the output message should be sent out on the serial port(s) at a fixed rate.						
				0 = None. User message is not automatically sent out either serial port.						
				1 = Message is sent out serial port 1 at a fixed rate.						
				2 = Message is sent out serial port 2 at a fixed rate.						
				3 = Message is sent out both serial ports at a fixed rate.						
2	RateDivisor	uint16	-	Sets the fixed rate at which the message is sent out the selected serial port(s). The number given is a divisor of the <i>ImuRate</i> which is nominally 800Hz. For example to have the sensor output at 50Hz you would set the Divisor equal to 16.						
4	OutputGrou	o uint16	-	Selects which output groups are active in the message. The number of OutputFields in this message should equal the number of active bits in the OutputGroup .						
6	OutputField(1) uint16	-	Active output fields for the first active group.						
4+2*N	OutputField(N) uint16	-	Active output fields for the Nth active group.						

5.2.1 **Example Case 1 – Selecting outputs from only the Common Group**

For many applications you might be able to get by with only the output types available in the common group. For these situations the configuration of the output message is simple. Suppose only the following information shown below is desired.

Bit Offset	Group 1 Common
0	TimeStartup
3	YawPitchRoll
5	AngularRate

For this example we will assume that the data will be polled using serial port 2 at 50 Hz.

To configure this output message you would send the following command to the VN-200.

\$VNWRG,75,2,16,01,0029*XX

Now let's dissect this command to see what is actually being set:

Field	Value	Description
Header	\$VN	ASCII message header
Command	WRG	Write register command
Register ID	77	Register 75 (Config register for first output message)
AsyncMode	2	Message set to output on serial port 2.
RateDivisor	16	Divisor = 16. If the <i>ImuRate</i> = 800Hz then, the message output rate will be $(800 / 16 = 50 \text{ Hz})$.
OutputGroup	01	Groups = 0x01. (Binary group 1 enabled)
GroupField 1	0029	Group 1 Field = 0x0029. In binary 0x0029 = 0b00101001. The active bits correspond to the following active output fields: Bit 0 – TimeStartup Bit 3 – YawPitchRoll Bit 5 - AngularRate
Checksum	XX	Payload terminator and checksum. XX instructs the VN-200 to bypass the checksum evaluation. This allows us to manually type messages in a serial terminal without needing to calculate a valid checksum.
End Line	\r\n	Carriage return and line feed. Terminates the ASCII message.

5.2.2 Example Case 2 – Outputs from multiple Output Groups

This example case demonstrates how to select multiple output fields from more than one output group. Assume that the following bold output types are desired:

Bit Offset	Group 1 Common	Group 3 IMU	Group 5 Attitude
0	TimeStartup		
1			
2		UncompAccel	Quaternion
3		UncompAngularRate	
4			MagNed

Also assume that you want the message to stream at 50 Hz over serial port 1.

To configure this output message you would send the following command to the VN-200.

\$VNWRG,75,1,16,15,0001,000C,0014*XX

Now let's dissect this command to see what is actually being set:

Field	Value	Description
Header	\$VN	ASCII message header
Command	WRG	Write register command
Register ID	75	Register 75 (Config register for first output message)
AsyncMode	1	Message sent on serial port 1.
RateDivisor	16	Divisor = 16. If the <i>ImuRate</i> = 800Hz then, the message output rate will be (800 / 16 = 50 Hz).
OutputGroup	15	Groups = 0x15. In binary 0x15 = 0x00010101. The active bits correspond to the following active output groups: Bit 0 – Common Bit 2 – Imu Bit 4 - Attitude
GroupField 1	0001	Group 1 Field = 0x0001. In binary 0x0001 = 0b00000001. The active bits correspond to the following active output fields: Bit 0 — TimeStartup
GroupField 2	000C	Group 2 Field = 0x000C. In binary 0x000C = 0b00001100. The active bits correspond to the following active output fields: Bit 3 – UncompAccel Bit 4 – UncompGyro
GroupField 3	0014	Group 3 Field = 0x0014. In binary 0x0014 = 0b00010100. The active bits correspond to the following active output fields: Bit 2 – Qtn Bit 4 – MagNed
Checksum	XX	Payload terminator and checksum. XX instructs the VN-200 to bypass the checksum evaluation. This allows us to manually type messages in a serial terminal without needing to calculate a valio checksum.
End Line	\r\n	Carriage return and line feed. Terminates the ASCII message.

5.3 Serial Output Message Format

The binary output message packets on the serial interface consist of a simple message header, payload, and a 16-bit CRC. An example packet is shown below for reference. The header is variable length depending upon the number of groups active in the message.

					Pay	load	CF	RC				
Field	Sync	Groups	Group	Field 1	Group	Payload				CRC		
Byte Offset	0	1	2	3	4	5	6	7		Ν	N+1	N+2
Туре	u8	u8	uź	16	u.		Vari	iable	ć	u1	L6	

5.3.1 **Sync Byte**

The sync byte is the first byte in the header. Its value will always be equal to 0xFA.

5.3.2 Groups

The group consist of a single byte which determines which message groups have been selected. The user can select from a wide assortment of different output types, which are organized into 8 different groups. The group byte acts as a bit field with each individual bit determining which binary groups are active for the given packet. The various groups are shown below.

Bit Offset	Description
0	General Purpose Group
1	Time and Event Count Group
2	Inertial Measurement Unit Group
3	GPS Measurement Group
4	AHRS Group
5	INS Group
6	Reserved for future use. Must be set to zero.
7	Reserved for future use. Must be set to zero.
	0 1 2 3 4 5

5.3.3 Group Fields

The group fields consist of N number of 16-bit bit fields that represent which output types have been selected in the active binary groups. The number of group fields in the header will depend upon how many groups are active in the message. The number of group fields present in the header will always be equal to the number of active bits in the group byte. When parsing the binary packet you can count the number of active bits present in the group byte, and then you can assume that this number of group fields will be present in the header. For example if only binary group 1 is selected (Group Byte = 0x01), then only one Group field will be present in the header, thus the header will be 4 bytes in length. If both binary group 1 and 3 are active (Group Byte = 0x05), then two Group field elements will be present in the header in this case will be 6 bytes in length.

5.3.4 Payload

The payload will consist of the output data selected based upon the bits selected in the group byte and the group field bytes. All output data in the payload section consist of the active outputs selected for binary group 1, followed by the active outputs selected for binary group 2, and so forth. No padding bytes are used between output fields.

5.3.5 **CRC**

The CRC consists of a 16-bit CRC of the packet. The CRC is calculated over the packet starting just after the sync byte in the header (not including the sync byte) and ending at the end of the payload. More information about the CRC algorithm and example code for how to perform the calculation is shown in Section 4.4. The CRC is selected such that if you compute the 16-bit CRC starting with the group byte and include the CRC itself, a valid packet will result in 0x0000 computed by the running CRC calculation over the entire packet. This provides a simple way of detecting packet corruption by simply checking to see if the CRC calculation of the entire packet (not including the sync byte) results in zero.

5.3.6 Payload Length

When parsing the packet you will need to know the length of the payload (in bytes) in order to know where the packet ends in the data stream. In order to reduce the overhead of the packet header length, the length of the payload is not included in the header. Instead it should be derived based upon determining the type of data present in the packet. All output data types are fixed length, thus the total length of the payload can be determined based upon inspection of the group byte and the group field bytes. In most applications you will likely only use a few binary output types, thus hard coding the payload length in your parser is the easiest approach. If you want to develop a more generic parser that can handle all available data output types supported by the VN-200, the easiest approach is to use a table lookup. Below is a table with the payload size (in bytes) for all available output types.

	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6
Field 1	8	8	2	8	2	2
Field 2	8	8	12	8	12	24
Field 3	8	8	12	2	16	24
Field 4	12	2	12	1	36	12
Field 5	16	8	4	1	12	12
Field 6	12	8	4	24	12	12
Field 7	24	8	16	24	12	12
Field 8	12	4	12	12	12	12
Field 9	12	0	12	12	12	12
Field 10	24	0	12	12	12	4
Field 11	20	0	12	4	28	4
Field 12	28	0	2	4	24	68
Field 13	2	0	40	32	0	64
Field 14	4	0	0	0	0	0
Field 15	8	0	0	0	0	0
Field 16	0	0	0	0	0	0

Table 15 - Binary Output Payload Length In Bytes

The above lookup table can be implemented in C as shown below using a simple 2D array. Since none of the individual outputs types exceed 256 bytes in length, this lookup table can be implemented as an array of bytes, which consumes only 96 bytes of memory.

Example Code

5.3.7 Example Cases

To help you better understand how the binary protocol works, the next two sections provide an overview of how the binary output packets are formed for two separate example cases.

Example Case 1

For example 1 we will assume that only binary group 1 is active, and only the yaw, pitch, and roll output is active within this binary group. In this case the header will have the following form.

		Heade	r			Payload											C	RC
Field	Sync	Group	Gro Fie	up 1 Ids		YawPitchRoll									CRC			
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Byte Value (Hex)	FA	01	08	00	93	50	2E	42	83	3E	F1	3F	48	B5	04	BB	92	88
Туре	u8	u8	u:	16		flo	at			float float							u	16
Value	0xFA	1	٤	3	0x422E5093 +43.578686 (Yaw)			0x3FF13E83 0xBB04B548 +1.8847202 (Pitch) -2.0249654e-3 (F						-	0x9	288		

Example Case 2

For the second example case we will assume that both binary group 1 and 3 are active. In binary group 1, the Ypr output is selected, and in binary group 3, the Temp output is selected.

	Header											
Field	Sync	Group	Gro		Group 3							
			Fie	lds	Fie	lds						
Byte Offset	0	1	2	3	4	5						
Byte Value	FA	01	08	00	01	00						
(Hex)												
Туре	u8	u8	uí	16	u:	16						
Value	0xFA	0x01	0x	08	0x	01						

Payload													C	RC					
Field					`	YawPi	tchRol	1						Te	mp		CRC		
Byte Offset	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
Byte Value (Hex)	A4	15	02	42	4D	DF	EB	3F	F6	1A	36	BE	BF	2D	A4	41	A8	ЗA	
Туре		flo	at			flo	at			flo	bat		float					16	
Value		0x420 2.5211				0X3FEBDF4D +1.8427521 (Pitch)				0XBE361AF6 -1.7783722e-1 (Roll)				0X41A42DBF l) +20.522337 (Temp)				0XA83A	

5.4 **Binary Group 1 – Common Outputs**

Binary group 1 contains a wide assortment of commonly used data required for most applications. All of the outputs found in group 1 are also present in the other groups. In this sense, group 1 is a subset of commonly used outputs from the other groups. This simplifies the configuration of binary output messages for applications that only require access to the commonly used data found in group 1. For these applications you can hard code the group field to 1, and not worry about implemented support for the other binary groups. Using group 1 for commonly used outputs also has the advantage of reducing the overall packet size, since the packet length is dependent upon the number of binary groups active.

Name	Bit Offset	Description
TimeStartup	0	Time since startup.
TimeGps	1	GPS time.
TimeSyncIn	2	Time since last SyncIn trigger.
Ypr	3	Estimated attitude as yaw pitch and roll angles.
Qtn	4	Estimated attitude as a quaternion.
AngularRate	5	Compensated angular rate.
Position	6	Estimated position. (LLA)
Velocity	7	Estimated velocity. (NED)
Accel	8	Estimated acceleration (compensated). (Body)
Imu	9	Calibrated uncompensated gyro and accelerometer
		measurements.
MagPres	10	Calibrated magnetic (compensated), temperature,
		and pressure measurements.
DeltaTheta	11	Delta time, theta, and velocity.
InsStatus	12	INS status.
SyncInCnt	13	Syncin count.
TimeGpsPps	14	Time since last GPS PPS trigger.
Resv	15	Reserved for future use. Should be set to zero.

Table 16 – Binary Group 1

5.4.1 **Time Startup**

The system time since startup measured in nano seconds. The time since startup is based upon the internal TXCO oscillator for the MCU. The accuracy of the internal TXCO is +/- 20ppm (-40C to 85C). This field is equivalent to the TimeStartup field in group 2.

		TimeStartup										
Byte Offset	0	1	2	3	4	5	6	7				
Туре	uint64											

5.4.2 **TimeGps**

The absolute GPS time since start of GPS epoch 1980 expressed in nano seconds. This field is equivalent to the TimeGps field in group 2.

		TimeGps									
Byte Offset	0	1	2	3	4	5	6	7			
Туре	uint64										

5.4.3 TimeSyncln

The time since the last SyncIn trigger event expressed in nano seconds. This field s equivalent to the TimeSyncIn field in group 2.

		TimeSyncIn										
Byte Offset	0	1	2	3	4	5	6	7				
Type uint64												

5.4.4 YawPitchRoll

The estimated attitude Yaw, Pitch, and Roll angles measured in degrees. The attitude is given as a 3,2,1 Euler angle sequence describing the body frame with respect to the local North East Down (NED) frame. This field is equivalent to the YawPitchRoll field in group 5.

		YawPitchRoll											
		ya	w			pit	ch		roll				
Byte Offset	0 1 2 3				4	5	6	7	8 9 10 1			11	
Туре		flo	at		float				float				

5.4.5 Quaternion

The estimated attitude quaternion. The last term is the scalar value. The attitude is given as the body frame with respect to the local North East Down (NED) frame. This field is equivalent to the Quaternion field in group 5.

								Qu	ate	rnio	n					
		qtr	n[0]			qtr	n[1]			qt	n[2]			qtr	n[3]	
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Туре		flo	oat			flo	oat			fl	oat			flo	at	

5.4.6 AngularRate

The estimated angular rate measured in rad/s. The angular rates are compensated by the onboard filter bias estimates. The angular rate is expressed in the body frame. This field is equivalent to the AngularRate field in group 3.

					Α	ngu	larR	late				
		rate	e[0]			rate	e[1]			rat	:e[2]	
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11
Туре		flo	at			flo	at			fl	oat	

5.4.7 **Position**

The estimated position given as latitude, longitude, and altitude given in [deg, deg, m] respectfully. This field is equivalent to the PosLla field in group 6.

												Pos	ition										
			atitu	ude							lon	gitud	е						altit	ude			
Byte Offset	0 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Туре			dou	ble							do	uble							dou	ıble			

5.4.8 Velocity

The estimated velocity in the North East Down (NED) frame, given in m/s. This field is equivalent to the VelNed field in group 6.

						Vel	ocit	y				
		vel	[0]			vel	[1]			Ve	el[2]	
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11
Туре		flo	at			flo	at			fl	oat	

5.4.9 **Accel**

The estimated acceleration in the body frame, given in m/s². This acceleration includes gravity and has been bias compensated by the onboard INS Kalman filter. This field is equivalent to the Accel field in group 3.

						A	ccel					
	.0	acce	el[0]			acce	el[1]			асс	el[2]	
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11
Туре		flo	at			flo	at			fl	oat	

5.4.10 **Imu**

The uncompensated IMU angular rate and acceleration measurements. The angular rate is given in rad/s, and the acceleration is given in m/s^2. These measurements correspond to the calibrated angular rate and acceleration measurements straight from the IMU. The measurements have not been corrected for bias offset by the onboard AHRS/INS Kalman filter. This field is equivalent to the UncompGyro and UncompAccel fields in group 3.

												In	nu										
	rate	e[0]			rate	2[1]			rat	te[2]			acce	el[0]			acce	el[1]			acce	el[2]	
Byte Offset	0 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Туре	flo	bat			flo	at			fl	oat			flo	at			flo	at			flo	at	

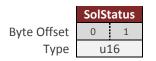
5.4.11 **MagPres**

The compensated magnetic, temperature, and pressure measurements from the IMU. The magnetic measurement is given in Gauss, and has been corrected for hard/soft iron corrections (if enabled). The temperature measurement is given in Celsius. The pressure measurement is given in kPa. This field is equivalent to the Mag, Temp, and Pres fields in group 3.

											Mag	Pres								
		mag	g[0]			ma	g[1]			ma	ag[2]			ter	np			pr	es	
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Туре		flo	at			flo	oat			fl	oat			flo	at			flo	at	

5.4.12 **DeltaThetaVel**

The delta time, angle, and velocity measurements. The delta time (dtime) is the time interval that the delta angle and velocities are integrated over. The delta theta (dtheta) is the delta rotation angles incurred due to rotation, since the last time the values were outputted by the device. The delta velocity (dvel) is the delta velocity incurred due to motion, since the last time the values were outputted by the device. The delta velocity incurred due to motion, since the last time the values were outputted by the device. These delta angles and delta velocities are calculated based upon the onboard conning and sculling integration performed onboard the sensor at the IMU rate (default 800Hz). The integration for both the delta angles and velocities are reset each time either of the values are either polled or sent out due to a scheduled asynchronous ASCII or binary output. This field is equivalent to the DeltaTheta and DeltaVel fields in group 3 with the inclusion of the additional delta time parameter.


							I	Delt	aTh	eta	Vel					
		dti	me		d	lthe	ta[C)]		dth	eta[1	.]		dthe	ta[2]	
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Туре		flo	at			flo	at			fl	oat			flo	at	

				Delt	aThe	etaVe	el (co	ntin	ued)			
		dve	I[0]			dve	l[1]			dve	l[2]	
Byte Offset	16	17	18	19	20	21	22	23	24	25	26	27
Туре		flo	at			flo	at			flo	at	

5.4.13 InsStatus

The INS status bitfield. This field is equivalent to the InsSatus field in group 6. See register 63 for more information on the individual bits in this field.

5.4.14 SynclnCnt

The number of SyncIn trigger events that have occurred. This field is equivalent to the SyncInCnt field in group 2.

	S	yncl	InCr	nt
Byte Offset	0	1	2	3
Туре		uŝ	32	

5.4.15 TimeGpsPps

The time since the last GPS PPS trigger event expressed in nano seconds. This field is equivalent to the TimePPS field in group 2.

5.5 **Binary Group 2 – Time Outputs**

Binary group 2 provides all timing and event counter related outputs. Some of these outputs (such as the TimeGps, TimePps, and TimeUtc), require either that the internal GPS to be enabled, or an external GPS must be present.

Name	Bit Offset	Description
TimeStartup	0	Time since startup.
TimeGps	1	Absolute GPS time.
GpsTow	2	Time since start of GPS week.
GpsWeek	3	GPS week.
TimeSyncIn	4	Time since last SyncIn trigger.
TimePPS	5	Time since last GPS PPS trigger.
TimeUTC	6	UTC time.
SyncInCnt	7	Syncln trigger count.
Resv	8-15	Reserved for future use. Should be set to zero.

Table 17 - Binary Group 2

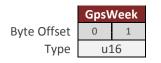
5.5.1 **TimeStartup**

The system time since startup measured in nano seconds. The time since startup is based upon the internal TXCO oscillator for the MCU. The accuracy of the internal TXCO is +/- 20ppm (-40C to 85C).

5.5.2 **TimeGps**

The GPS time of week expressed in nano seconds.

			٦	Time	Gp	s		
Byte Offset	0	1	2	3	4	5	6	7
Туре				uin	t64			


5.5.3 **GpsTow**

The time since the start of the current GPS time week expressed in nano seconds.

			(Gps	Tow	1		
Byte Offset	0	1	2	3	4	5	6	7
Туре				uin	t64			

5.5.4 **GpsWeek**

The current GPS week.

5.5.5 TimeSyncln

The time since the last SyncIn event trigger expressed in nano seconds.

5.5.6 TimeGpsPps

The time since the last GPS PPS trigger event expressed in nano seconds.

			٦	Гime	ePp	s		
Byte Offset	0	1	2	3	4	5	6	7
Туре				uin	t64			

5.5.7 **TimeUtc**

The current UTC time. The year is given as a signed byte year offset from the year 2000. For example the year 2013 would be given as year 13.

			Ti	meUtc					
Fields	year	month	day	hour	min	sec	ms		
Byte Offset	0	1	2	3	4	5	67		
Туре	s8	u8	u8	u8	u8	u8	u16		

5.5.8 SynclnCnt

The number of SyncIn trigger events that have occurred.

Byte Offset Type

S	yncl	nCr	nt
0	1	2	3
	uŝ	32	

5.6 **Binary Group 3 – IMU Outputs**

Binary group 3 provides all outputs which are dependent upon the measurements collected from the onboard IMU, or an external IMU (if enabled).

Name	Bit Offset	Description
ImuStatus	0	Reserved for future use.
UncompMag	1	Uncompensated magnetic measurement.
UncompAccel	2	Uncompensated acceleration measurement.
UncompGyro	3	Uncompensated angular rate measurement.
Тетр	4	Temperature measurement.
Pres	5	Pressure measurement.
DeltaTheta	6	Delta theta angles.
DeltaV	7	Delta velocity.
Mag	8	Compensated magnetic measurement.
Accel	9	Compensated acceleration measurement.
AngularRate	10	Compensated angular rate measurement.
SensSat	11	Sensor saturation bit field.
Resv	12-15	Reserved for future use. Should be set to zero.

Table 18 – Binary Group 3

5.6.1 ImuStatus

Status is reserved for future use. Not currently used in the current code, as such will always report 0.

	ImuS	tatus
Byte Offset	0	1
Туре	uź	16

5.6.2 UncompMag

The IMU magnetic field measured in units of Gauss, given in the body frame. This measurement is compensated by the static calibration (individual factory calibration stored in flash), and the user compensation, however it is not compensated by the onboard Hard/Soft Iron estimator.

		UncompMag											
		ma	g[0]			mag	g[1]		mag[2]				
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11	
Туре		flc	at			flo	at		float				

5.6.3 UncompAccel

The IMU acceleration measured in units of m/s², given in the body frame. This measurement is compensated by the static calibration (individual factory calibration stored in flash), however it is not compensated by any dynamic calibration such as bias compensation from the onboard INS Kalman filter.

					Ur	ncor	npA	۱cce				
	i	acce	el[0]			acce	el[1]		accel[2]			
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11
Туре	float					flo	at		float			

5.6.4 UncompGyro

The IMU angular rate measured in units of rad/s, given in the body frame. This measurement is compensated by the static calibration (individual factory calibration stored in flash), however it is not compensated by any dynamic calibration such as the bias compensation from the onboard AHRS/INS Kalman filters.

		UncompGyro											
		gyro	o[0]			gyro	o[1]		gyro[2]				
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11	
Туре		flo	at			float				float			

5.6.5 **Temp**

The IMU temperature measured in units of Celsius.

Byte Offset Type

	Tei	mp	
0	1	2	3
	flo	at	

5.6.6 **Pres**

The IMU pressure measured in kilopascals. This is an absolute pressure measurement. Typical pressure at sea level would be around 100 kPa.

		Pr	es	
Byte Offset	0	1	2	3
Туре		flc	at	

5.6.7 DeltaTheta

The delta theta (dtheta) is the delta rotation angles incurred due to rotation, since the last time the values were output by the device. The delta angles are calculated based upon the onboard conning and sculling integration performed onboard the sensor at the IMU sampling rate (nominally 800Hz). The delta time (dtime) is the time interval that the delta angle and velocities are integrated over. The integration for the delta angles are reset each time the values are either polled or sent out due to a scheduled asynchronous ASCII or binary output. Time is given in sections. Delta angles are given in degrees.

		DeltaTheta														
Fields		dtime dtheta[0] dtheta[1] dtheta[2]														
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11	12 13 14 1		15	
Туре		flo	oat			flo	bat		float					flo	oat	

5.6.8 **DeltaV**

The delta velocity (dvel) is the delta velocity incurred due to motion, since the last time the values were output by the device. The delta velocities are calculated based upon the onboard conning and sculling integration performed onboard the sensor at the IMU sampling rate (nominally 800Hz). The integration for the delta velocities are reset each time the values are either polled or sent out due to a scheduled asynchronous ASCII or binary output. Delta velocity is given in meters per second.

		DeltaVel										
Fields	dvel[0]				dve	l[1]			dv	dvel[2]		
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11
Туре	float				flo	at			fl	oat		

5.6.9 **Mag**

The IMU compensated magnetic field measured units of Gauss, and given in the body frame. This measurement is compensated by the static calibration (individual factory calibration stored in flash), the user compensation, and the dynamic calibration from the onboard Hard/Soft Iron estimator.

						Ν	/lag					
		mag[0]				mag	g[1]			mag[2]		
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11
Туре		float				flo	at			fl	oat	

5.6.10 **Accel**

The compensated acceleration measured in units of m/s², and given in the body frame. This measurement is compensated by the static calibration (individual factory calibration stored in flash), the user compensation, and the dynamic bias compensation from the onboard INS Kalman filter.

		Accel										
	accel[0]				acce	el[1]			accel[2]			
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11
Туре	float				float				fl	oat		

5.6.11 AngularRate

The compensated angular rate measured in units of rad/s, and given in the body frame. This measurement is compensated by the static calibration (individual factor calibration stored in flash), the user compensation, and the dynamic bias compensation from the onboard INS Kalman filter.

		AngularRate										
	gyro[0]				gyro	o[1]			gy	ro[2]		
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11
Туре	float				flo	at			fl	oat		

5.6.12 **SensSat**

This field provides flags identifying whether any of the measurements are currently saturated.

	Sen	sSat
Byte Offset	0	1
Туре	u	16

Table 19 - SensSat Bit Field Description

Name	Bit Offset	Description
MagX	0	Magnetometer X-axis is saturated.
MagY	1	Magnetometer Y-axis is saturated.
MagZ	2	Magnetometer Z-axis is saturated.
AccX	3	Accelerometer X-axis is saturated.
AccY	4	Accelerometer Y-axis is saturated.
AccZ	5	Accelerometer Z-axis is saturated.
GyroX	6	Gyro X-axis is saturated.
GyroY	7	Gyro Y-axis is saturated.
GyroZ	8	Gyro Z-axis is saturated.
Pres	9	Pressure measurement is saturated.
Reserved	10-15	Reserved for future use.

5.7 **Binary Group 4 – GPS Outputs**

Binary group 4 provides all outputs which are dependent upon the measurements collected from the onboard GPS, or external GPS (if enabled). All data in this group is updated at the rate of the GPS receiver (nominally 5Hz for the internal GPS).

If data is asynchronously sent from group 4 at a rate equal to the GPS update rate, then packets will be sent out when updated by the GPS receiver. For all other rates, the output will be based on the divisor selected and the internal IMU sampling rate.

Name	Bit Offset	Description
UTC	0	GPS UTC Time
Tow	1	GPS time of week
Week	2	GPS week
NumSats	3	Number of tracked satellites
Fix	4	GPS fix
PosLla	5	GPS position (latitude, longitude, altitude)
PosEcef	6	GPS position (ECEF)
VelNed	7	GPS velocity (NED)
VelEcef	8	GPS velocity (ECEF)
PosU	9	GPS position uncertainty (NED)
VelU	10	GPS velocity uncertainty
TimeU	11	GPS time uncertainty
Resv	12-15	Reserved for future use. Should be set to zero.

Table 20 - Binary Group 4

5.7.1 **UTC**

The current UTC time. The year is given as a signed byte year offset from the year 2000. For example the year 2013 would be given as year 13.

		UTC								
Fields	year	month	day	hour	min	sec	m	าร		
Byte Offset	0	1	2	3	4	5	6	7		
Туре	s8	u8	u8	u8	u8	u8	u1	16		

5.7.2 **Tow**

The GPS time of week given in nano seconds.

		Тоw						
Byte Offset	0	1	2	3	4	5	6	7
Туре	uint64							

5.7.3 Week

The current GPS week.

	We	eek
Byte Offset	0	1
Туре	u.	16

5.7.4 **NumSats**

The number of tracked GPS satellites.

	NumSats
Byte Offset	0
Туре	u8

5.7.5 **Fix**

The current GPS fix.

FixByte Offset0Typeu8

Table 21 - GPS Fix

Value	Description
0	No fix
1	Time only
2	2D
3	3D

5.7.6 **PosLla**

The current GPS position measurement given as the geodetic latitude, longitude and altitude above the ellipsoid. The units are in [deg, deg, m] respectfully.

		PosLla																					
	latitude				longitude						altitude												
Byte Offset	0 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Туре		double				double						double											

5.7.7 **PosEcef**

The current GPS position given in the Earth centered Earth fixed (ECEF) coordinate frame, given in meters.

		PosEcef																						
	pos[0]				pos[1]							pos[2]												
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Туре	double				double						double													

5.7.8 **VelNed**

The current GPS velocity in the North East Down (NED) coordinate frame, given in m/s.

		VelNed											
		vel[0]			vel[1]				vel[2]				
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11	
Туре		float				float				float			

5.7.9 **VelEcef**

The current GPS velocity in the Earth centered Earth fixed (ECEF) coordinate frame, given in m/s.

		VelEcef											
		vel[0]			vel[1]				vel[2]				
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11	
Туре		flo	at			flo	at			fl	oat		

5.7.10 **PosU**

The current GPS position uncertainty in the North East Down (NED) coordinate frame, given in meters.

		PosU											
		posU[0]			posU[1]				posU[2]				
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11	
Туре		float		float				float					

5.7.11 **VelU**

The current GPS velocity uncertainty, given in m/s.

Byte Offset Type

	VelU								
0	1	2	3						
	flo	at							

5.7.12 **TimeU**

The current GPS time uncertainty, given in nano seconds.

Byte Offset Type

	TimeU								
0	1	2	3						
	u32								

5.8 **Binary Group 5 – Attitude Outputs**

Binary group 5 provides all estimated outputs which are dependent upon the estimated attitude solution. The attitude will be derived from either the AHRS or the INS, depending upon which filter is currently active and tracking. All of the fields in this group will only be valid if the AHRS/INS filter is currently enabled and tracking.

Name	Bit Offset	Description
VpeStatus	0	VPE Status
Ypr	1	Yaw Pitch Roll
Qtn	2	Quaternion
DCM	3	Directional Cosine Matrix
MagNed	4	Compensated magnetic (NED)
AccelNed	5	Compensated acceleration (NED)
LinearAccelBody	6	Compensated linear acceleration (no gravity)
LinearAccelNed	7	Compensated linear acceleration (no gravity) (NED)
YprU	8	Yaw Pitch Roll uncertainty
Resv	9-15	Reserved for future use. Should be set to zero.

Table 22 - Binary Group 5

5.8.1 VpeStatus

The VPE status bitfield.

	VpeS	tatus
Byte Offset	0	1
Туре	uí	16

Table 23 - VpeStatus BitField

Name	Bit Offset	Format	Unit	Description
AttitudeQuality	0	2 bits	-	Provides an indication of the quality of the attitude solution.
GyroSaturation	2	1 bit	-	At least one gyro axis is currently saturated.
GyroSaturationRecovery	3	1 bit	-	Filter is in the process of recovering from a gyro saturation event.
MagDisturbance	4	2 bit	-	A magnetic DC disturbance has been detected. 0 – No magnetic disturbance 1 to 3 – Magnetic disturbance is present.
MagSaturation	6	1 bit	-	At least one magnetometer axis is currently saturated.
AccDisturbance	7	2 bit	-	A strong acceleration disturbance has been detected. 0 – No acceleration disturbance. 1 to 3 – Acceleration disturbance has been detected.
AccSaturation	9	1 bit	-	At least one accelerometer axis is currently saturated.
Reserved	10	1 bit	-	Reserved for internal use. May change state at run-time.
KnownMagDisturbance	11	1 bit	-	A known magnetic disturbance has been reported by the user and the magnetometer is currently tuned out.
KnownAccelDisturbance	12	1 bit	-	A known acceleration disturbance has been reported by the user and the accelerometer is currently tuned out.
Reserved	13	3 bits	-	Reserved for future use.

Table 24	AttitudeQuality	Field
----------	-----------------	-------

Value	Description
0	Excellent
1	Good
2	Bad
3	Not tracking

5.8.2 YawPitchRoll

The estimated attitude Yaw, Pitch, and Roll angles measured in degrees. The attitude is given as a 3,2,1 Euler angle sequence describing the body frame with respect to the local North East Down (NED) frame.

					Ya	awP	itch	Rol				
		ya	W			pit	ch	roll				
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11
Туре		flo	at			flo	at		8 9 10 1 float			

5.8.3 Quaternion

The estimated attitude quaternion. The last term is the scalar value. The attitude is given as the body frame with respect to the local North East Down (NED) frame.

		Quaternion														
		qtn[0]				qtr	n[1]			qt	n[2]			qtr	[3]	
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Туре	float				flo	oat			fl	oat			flo	at		

5.8.4 **DCM**

The estimated attitude directional cosine matrix given in column major order. The DCM maps vectors from the North East Down (NED) frame into the body frame.

		Dcm																						
Fields		dcm	n[0]			dcm	า[1]			dc	m[2]			dcn	า[3]			dcn	า[4]			dcn	า[5]	
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Туре		flo	at			flo	at		float				flo	at			flo	at			flo	at		

	Dcm (continued)											
Fields		dcn	า[6]			dcm	า[7]					
Byte Offset	24	25	26	27	28	29	30	31	32	33	34	35
Туре		flo	at			flo	at		float			

5.8.5 **MagNed**

The current estimated magnetic field (Gauss), given in the North East Down (NED) frame. The current attitude solution is used to map the measurement from the measured body frame to the inertial (NED) frame. This measurement is compensated by both the static calibration (individual factory calibration stored in flash), and the dynamic calibration such as the user or onboard Hard/Soft Iron compensation registers.

						Ma	gNe	ed				
		ma	g[0]			ma	g[1]			ma	ag[2]	
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11
Туре		flo	at			flo	at			fl	oat	

5.8.6 AccelNed

The estimated acceleration (with gravity) reported in m/s², given in the North East Down (NED) frame. The acceleration measurement has been bias compensated by the onboard INS filter. This measurement is attitude dependent, since the attitude is used to map the measurement from the body frame into the inertial (NED) frame. If the device is stationary and the INS filter is tracking, the measurement should be nominally equivalent to the gravity reference vector in the inertial frame (NED).

						Acc	elNe	ed				
		acce	el[0]			acce	el[1]					
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11
Туре		flo	at			flo	at			float		

5.8.7 LinearAccelBody

The estimated linear acceleration (without gravity) reported in m/s², and given in the body frame. The acceleration measurement has been bias compensated by the onboard INS filter, and the gravity component has been removed using the current gravity reference vector model. This measurement is attitude dependent, since the attitude solution is required to map the gravity reference vector (known in the inertial NED frame), into the body frame so that it can be removed from the measurement. If the device is stationary and the onboard INS filter is tracking, the measurement nominally will read 0 in all three axes.

					Line	earA	cce	lBo	dy				
		accel[0]				acce	el[1]			асс	el[2]		
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11	
Туре		flo	at			flo	at			8 9 10 11 float			

5.8.8 LinearAccelNed

The estimated linear acceleration (without gravity) reported in m/s², and given in the North East Down (NED) frame. This measurement is attitude dependent as the attitude solution is used to map the measurement from the body frame into the inertial (NED) frame. This acceleration measurement has been bias compensated by the onboard INS filter, and the gravity component has been removed using the current gravity reference vector estimate. If the device is stationary and the onboard INS filter is tracking, the measurement nominally will read 0 in all three axes.

					Lin	ear/	Acce	elNe	d			
		acce	el[0]			acce	el[1]			асс	el[2]	
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11
Туре		flo	at			flo	at			8 9 10 : float		

5.8.9 AngularRate

The estimated angular rotation rate reported in rad/s, given in the body frame. This angular rate measurement has been bias compensated by the onboard AHRS/INS Kalman filter. If the device is stationary (not rotating) and the onboard AHRS/INS filter is tracking, the measurement nominally will read 0 in all three axes.

					Α	ngu	larR	late					
		rate	e[0]			rate	2[1]			rate[2] 8 9 10			
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11	
Туре		flo	at			flo	at			fl	oat		

5.8.10 **YprU**

The estimated attitude (Yaw, Pitch, Roll) uncertainty (1 Sigma), reported in degrees.

						Y	prU					
		ya	W			pit	ch			r	oll	
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11
Туре		flo	at			flo	at			fl	oat	

The estimated attitude (YprU) field is not valid when the INS Scenario mode in the INS Basic Configuration register is set to AHRS mode. See section 10.3.1 for more details.

5.9 **Binary Group 6 – INS Outputs**

Binary group 6 provides all estimated outputs which are dependent upon the onboard INS state solution. All of the fields in this group will only be valid if the INS filter is currently enabled and tracking.

Name	Bit Offset	Description
InsStatus	0	Ins Status
PosLla	1	Ins Position (latitude, longitude, altitude)
PosEcef	2	Ins Position (ECEF)
VelBody	3	Ins Velocity (Body)
VelNed	4	Ins Velocity (NED)
VelEcef	5	Ins Velocity (ECEF)
MagEcef	6	Compensated magnetic (ECEF)
AccelEcef	7	Compensated acceleration (ECEF)
LinearAccelEcef	8	Compensated linear acceleration (no gravity) (ECEF)
PosU	9	Ins Position Uncertainty
VelU	10	Ins Velocity Uncertainty
Resv	11-15	Reserved for future use. Should be set to zero.

Table 25 - Binary Group 6

5.9.1 InsStatus

The INS status bitfield. See register 63 for more information on the individual bits in this field.

	InsSt	atus
Byte Offset	0	1
Туре	u	16

5.9.2 **PosLla**

The estimated position given as latitude, longitude, and altitude given in [deg, deg, m] respectfully.

													Po	sLla										
				latit	ude							lon	gitud	е						altit	ude			
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Туре				dou	ıble							do	uble							dou	ıble			

5.9.3 **PosEcef**

The estimate position given in the Earth centered Earth fixed (ECEF) frame, reported in meters.

										Pos	Ecef										
		ро	os[0]						рс	os[1]							pos	5[2]			
Byte Offset	0 1	2 3	4	5	6 7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Туре		dc	uble						do	uble							dou	ıble			

5.9.4 VelBody

The estimated velocity in the body frame, given in m/s.

						Vel	Boc	ly				
		vel	[0]			vel	[1]			Ve	el[2]	
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11
Туре		flo	at			flo	at			fl	oat	

5.9.5 **VelNed**

The estimated velocity in the North East Down (NED) frame, given in m/s.

						Ve	lNe	d				
		vel	[0]			vel	[1]			VE	el[2]	
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11
Туре		flo	at			flo	at			fl	oat	

5.9.6 **VelEcef**

The estimated velocity in the Earth centered Earth fixed (ECEF) frame, given in m/s.

						Ve	lEce	ef				
		vel	[0]			vel	[1]			Ve	el[2]	
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11
Туре		flo	at			flo	at			fl	oat	

5.9.7 MagEcef

The compensated magnetic measurement in the Earth centered Earth fixed (ECEF) frame, given in Gauss.

						Ma	gEc	ef				
		ma	g[0]			ma	g[1]			ma	ag[2]	
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11
Туре		flo	at			flo	at			fl	oat	

5.9.8 AccelEcef

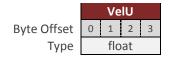
The estimated acceleration (with gravity) reported in m/s², given in the Earth centered Earth fixed (ECEF) frame. The acceleration measurement has been bias compensated by the onboard INS filter. This measurement is attitude dependent, since the attitude is used to map the measurement from the body frame into the inertial (ECEF) frame. If the device is stationary and the INS filter is tracking, the measurement should be nominally equivalent to the gravity reference vector in the inertial frame (ECEF).

						Acc	elEc	ef				
		acce	el[0]			acce	el[1]			асс	el[2]	
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11
Туре		flo	at			flo	at			fl	oat	

5.9.9 LinearAccelEcef

The estimated linear acceleration (without gravity) reported in m/s², and given in the Earth centered Earth fixed (ECEF) frame. This measurement is attitude dependent as the attitude solution is used to map the measurement from the body frame into the inertial (ECEF) frame. This acceleration measurement has been bias compensated by the onboard INS filter, and the gravity component has been removed using the current gravity reference vector estimate. If the device is stationary and the onboard INS filter is tracking, the measurement will nominally read 0 in all three axes.

					Line	ear/	Acce	elEco	ef			
		acce	el[0]			acce	el[1]			асс	el[2]	
Byte Offset	0	1	2	3	4	5	6	7	8	9	10	11
Туре	float float flo							oat				


5.9.10 **PosU**

The estimated uncertainty (1 Sigma) in the current position estimate, given in meters.

		Ро	sU	
Byte Offset	0	1	2	3
Туре		flo	at	

5.9.11 VelU

The estimated uncertainty (1 Sigma) in the current velocity estimate, given in m/s.

6 System Module

6.1 **Commands**

6.1.1 Read Register Command

This command allows the user to read any of the registers on the VN-200 module. The only required parameter is the ID of the register to be read. The first parameter of the response will contain the same register ID followed by a variable number of parameters. The number of parameters and their formatting is specific to the requested register. Refer to the appropriate register Section contained in Section 6 for details on this formatting. If an invalid register is requested, an error code will be returned.

Table 26 -	Example	Read	Register	Command
------------	---------	------	----------	---------

Example Command	Message
UART Command	\$VNRRG,5*46
UART Response	\$VNRRG,5,9600*65
SPI Command	01 05 00 00 (shown as hex)
SPI Response	00 01 05 00 80 25 00 00 (shown as hex)

6.1.2 Write Register Command

This command is used to write data values to a specified register on the VN-200 module. The ID of the register to be written to is the first parameter. This is followed by the data values specific to that register. Refer to the appropriate register in Section 6 for this formatting. If an invalid register is requested, an error code will be returned.

Example Command	Message
UART Command	\$VNWRG,5,9600*60
UART Response	\$VNWRG,5,9600*60
SPI Command	02 05 00 00 80 25 00 00 (shown as hex)
SPI Response	00 02 05 00 80 25 00 00 (shown as hex)

This command will write the current register settings into non-volatile memory. Once the settings are stored in non-volatile (Flash) memory, the VN-200 module can be power cycled or reset, and the register will be reloaded from non-volatile memory. The module can always be reset to the factory settings by issuing the Restore Factory Settings command or by pulling pin 7 (Restore) high during reset.

Example Command	Message
UART Command	\$VNWNV*57
UART Response	\$VNWNV*57
SPI Command	03 00 00 00 (shown as hex)
SPI Response	00 03 00 00 (shown as hex)

Table 28 - Example	Write	Settings	Command
--------------------	-------	----------	---------

Due to limitations in the flash write speed the write settings command takes \sim 500ms to complete. Any commands that are sent to the sensor during this time will be responded to after the operation is complete.

6.1.4 **Restore Factory Settings Command**

This command will restore the VN-200 module's factory default settings and will reset the module. There are no parameters for this command. The module will respond to this command before restoring the factory settings.

Example Command	Message
UART Command	\$VNRFS*5F
UART Response	\$VNRFS*5F
SPI Command	04 00 00 00 (shown as hex)
SPI Response	00 04 00 00 (shown as hex)

Table 29 - Example Restore Factory Settings Command

6.1.5 **Reset Command**

This command will reset the module. There are no parameters required for this command. The module will first respond to the command and will then perform a reset. Upon a reset all registers will be reloaded with the values saved in non-volatile memory. If no values are stored in non-volatile memory, the device will default to factory settings. Also upon reset the VN-200 will re-initialize its Kalman filter, thus the filter will take a few seconds to completely converge on the correct attitude and correct for gyro bias. This command is equivalent in functionality to the hardware reset performed by pulling pin 21 (NRST) low.

Example Command	Message
UART Command	\$VNRST*4D
UART Response	\$VNRST*4D
SPI Command	06 00 00 00 (shown as hex)
SPI Response	00 06 00 00 (shown as hex)

6.1.6 Firmware Update Command

This command is used to enter the boot loader for performing firmware updates. Upon receiving this command on serial port 1, the VN-200 will enter into firmware reprogramming mode. The easiest method of updating firmware is to use one of the VectorNav Firmware Update Tools. If you wish however to incorporate the ability to update the firmware into your own system, the protocol and procedure for updating the firmware is outlined in the **AN013 Firmware Update Protocol** application note.

Table 31 - Example Firmware Update Command

Example Command	Message
UART Command	\$VNFWU*XX
UART Response	\$VNFWU*XX

0

Firmware updates are only supported on serial port 1 (pin 12 & 13). If you plan on using either serial port 2 or SPI as your primary means of communicating with the sensor, it is recommended that you also provide support in your design to communicate with the sensor using serial port 1 to facilitate firmware updates.

6.1.7 Serial Command Prompt Command

This command allows you to enter into the command prompt mode on either serial port. The command mode supports a wide range of diagnostics and configuration options that go beyond the abilities of the normal read/write configuration register interface.

Table 32 - Example	Command	Prompt	Command
--------------------	---------	--------	---------

Example Command	Message
UART Command	\$VNCMD*XX
UART Response	\$VNCMD*XX

6.1.8 Asynchronous Output Pause Command

This command allows the user to temporarily pause the asynchronous outputs on the given serial port. When paused both the ASCII and the 3 binary asynchronous output messages will temporarily stop outputting from the device on the serial port for which this command is received. The state of the asynchronous output register and the binary output configuration registers will not be changed when the asynchronous outputs are paused. This command is useful when you want to send configuration commands to the VN-200, but do not want to deal with the additional overhead of having to parse a constant stream of asynchronous output messages while waiting for the response to your configuration commands. It is also useful when you want to type commands to the device from a serial command prompt. The below example commands demonstrate how to pause and resume asynchronous outputs.

Table 33	Example	Asynchronous	Pause/Resum	e Commands
----------	---------	--------------	-------------	------------

Example Command	Message
Pause Async Outputs	\$VNASY,0*XX
Resume Async Outputs	\$VNASY,1*XX

i)

6.2 **Configuration Registers**

6.2.1 User Tag Register

				User Tag				
	Register ID :	0		Firmware :	1.0.0.0	Access: Read / Write		
Comment : User assigned tag register. Any values can be assigned to this register. They								
		be stored to flash upon issuing a write settings command.						
Size (Bytes): 20								
Example Response: \$VNRRG,00,SENSOR_A14*52								
Offset	Name	Format	Unit	Description				
0	Tag	char	-		han 20 chara	o 20 bytes or characters. If a cters is given, then the string .		

Only printable ASCII characters are allowed for the user tag register.

Allowable characters include any character in the hexadecimal range of 0x20 to 0x7E, excluding 0x24 ('\$'), 0x2C (','), and 0x2A ('\$'). The use any other character will result in an invalid parameter error code returned. This restriction is required to ensure that the value set in the user tag register remains accessible using both the SPI and serial ASCII protocols.

6.2.2 Model Number Register

			M	lodel Number		
	Register ID :	1		Firmware : 1.0.0.0	Access :	Read Only
Comment :		Model Number				
	Size (Bytes):	24				
Examp	le Response:	\$VNRRG,01,VN-2001	-DEV*7	4		
Offset	Name	Format	Unit	Description		
0	Product	char	-	Product name. Max 24 characters.		
	Name					

6.2.3 Hardware Revision Register

		Ha	ardware	Revision Register			
	Register ID :	2		Firmware :	1.0.0.0	Access :	Read Only
Comment :		Hardware revision.					
	Size (Bytes):	4					
Exam	ple Response:	\$VNRRG,02,1*6C					
Offset	Name	Format	Unit	Description			
0	Revision	uint32	-	Hardware revisior	າ.		

6.2.4 Serial Number Register

			Se	erial Number			
	Register ID :	3		Firmware :	1.0.0.0	Access :	Read Only
	Comment :	Serial Number					
	Size (Bytes):	4					
Examp	le Response:	\$VNRRG,03,0100011	.981*5D				
Offset	Name	Format	Unit	Description			
0	SerialNum	uint32	-	Serial Number (32	-bit unsigned i	nteger)	

6.2.5 Firmware Version Register

			Firmwa	re Version Register
	Register ID :	4		Firmware: 1.0.0.0 Access: Read Only
	Comment :	Firmware version.		
	Size (Bytes):	4		
Exam	ple Response:	\$VNRRG,04,0.1.7.0	*73	
Offset	Name	Format	Unit	Description
0	Major	uint8	-	Major release version of firmware.
	Version			
1	Minor	uint8	-	Minor release version of firmware
	Version			
2	Feature	uint8	-	Feature release version of the firmware.
	Version			
3	HotFix	uint8	-	Hot fix number. Numbers above 100 are reserved for custom
				firmware versions.

6.2.6 Serial Baud Rate Register

			Se	erial Baud Rate			
	Register ID :	5		Firmware :	1.0.0.0	Access :	Read / Write
	Comment :	Serial bau	d rate.				
	Size (Bytes):	4					
	Example Command:	\$VNWRG,	05,1152	00*58			
Offset	Name	Format	Unit	Description			
0	Baud Rate	uint32	-	Serial baud rate.			
4	Serial Port	uint8	-	Optional. The seria	al port to cha	nge the baud rate	e on.
				If this parameter is	not provide	d then the baud i	rate will be
				changed for the ac	tive serial po	ort.	
				1 – Serial Port 1			
				2 – Serial Port 2			

Acceptable Baud Rates
9600
19200
38400
57600
115200
128000
230400
460800
921600

Table 34 – Baud Rate Settings

The serial port parameter in this register is optional. If it is not provided, the baud rate will be changed on the active serial port. The response to this register will include the serial port parameter if the optional parameter is provided. If the second parameter is not provided then the response will not include this parameter.

Upon receiving a baud rate change request, the VN-200 will send the response prior to changing the baud rate.

		A	synchror	nous Data Output Ty	/pe		
	Register ID :	6		Firmware :	1.0.0.0	Access :	Read / Write
	Comment :	Asynchror	nous data	a output type.			
	Size (Bytes):	4					
	Example Command:	\$VNWRG,	06,0*6C				
Offset	Name	Format	Unit	Description			
0	ADOR	uint32	-	Output register.			
4	Serial Port	uint8	-	Optional. The seria type on. If this par be changed for the 1 – Serial Port 1 2 – Serial Port 2	ameter is not	provided then t	

6.2.7 Async Data Output Type Register

This register controls the type of data that will be asynchronously outputted by the module. With this register, the user can specify which data register will be automatically outputted when it gets updated with a new reading. Table 35 below lists which registers can be set to asynchronously output, the value to specify which register to output, and the header of the asynchronous data packet. Asynchronous data output can be disabled by setting this register to zero. The asynchronous data output will be sent out automatically at a frequency specified by the Async Data Output Frequency Register (Section 0).

The serial port parameter in this register is optional. If it is not provided, the ADOF will be changed on the active serial port. The response to this register will include the serial port parameter if the optional parameter is provided. If the second parameter is not provided, the response will not include this parameter.

Setting	Asynchronous Solution Output Type	Header	Formatting Section
0	Asynchronous output turned off	N/A	
1	Yaw, Pitch, Roll	VNYPR	
2	Quaternion	VNQTN	
8	Quaternion, Magnetic, Acceleration and Angular Rates	VNQMR	
10	Magnetic Measurements	VNMAG	
11	Acceleration Measurements	VNACC	
12	Angular Rate Measurements	VNGYR	
13	Magnetic, Acceleration, and Angular Rate Measurements	VNMAR	
14	Yaw, Pitch, Roll, Magnetic, Acceleration, and Angular Rate Measurements	VNYMR	
16	Yaw, Pitch, Roll, Body True Acceleration, and Angular Rates	VNYBA	
17	Yaw, Pitch, Roll, Inertial True Acceleration, and Angular Rates	VNYIA	
19	IMU Measurements	VNIMU	
20	GPS LLA	VNGPS	
21	GPS ECEF	VNGPE	
22	INS LLA	VNINS	
23	INS ECEF	VNINE	
28	INS LLA 2	VNISL	
29	INS ECEF 2	VNISE	
30	Delta theta and delta velocity	VNDTV	

Table 35 – Asynchronous Solution Output Settings

6.2.8 Async Data Output Frequency Register

		Asyn	chronou	ıs Data Output Frequ	iency		
	Register ID :	7		Firmware :	1.0.0.0	Access :	Read / Write
	Comment :	Asynchror	nous data	a output frequency.			
	Size (Bytes):	4					
	Example Command:	\$VNWRG,	07,40*5	9			
Offset	Name	Format	Unit	Description			
0	ADOF	uint32	Hz	Output frequency.			
4	Serial Port	uint8	-	Optional. The seria	al port to char	nge the asynchro	onous data
				type frequency on	. If this param	neter is not prov	ided then the
				ADOF will be chan	ged for the ac	ctive serial port.	
				1 – Serial Port 1			
				2 – Serial Port 2			

Table 36 - ADOR Data Rates

Acceptable Data Rates (Hz)						
1						
2						
4						
5						
10						
20						
25						
40						
50						
100						
200						

The serial port parameter in this register is optional. If it is not provided, the ADOF will be changed on the active serial port. The response to this register will include the serial port parameter if the optional parameter is provided. If the second parameter is not provided, the response will not include this parameter.

6.2.9 Synchronization Control

			Syn	chronization Control		
	Register ID :	32		Firmware : v1.0.0.0	Access :	Read / Write
	Comment :	Contains external o		ters which allow the timing of the VN	1-200 to be sy	nchronized with
	Size (Bytes):	20				
	Example Response:	\$VNRRG,3	32,3,0,0	,0,6,1,0,100000000,0*6B		
Offset	Name	Format	Unit	Description		
0	SyncInMode	uint8	-	Input signal synchronization mode		
1	SyncInEdge	uint8	-	Input signal synchronization edge s	election	
2	SyncInSkipFactor	uint16	-	Input signal trigger skip factor		
4	RESERVED	uint32	-	Reserved for future use. Defaults to	o 0.	
8	SyncOutMode	uint8	-	Output synchronization signal mode	е	
9	SyncOutPolarity	uint8	-	Output synchronization signal polar	rity	
10	SyncOutSkipFactor	uint16	-	Output synchronization signal skip	factor	
12	SyncOutPulseWidth	uint32	ns	Output synchronization signal pulse	e width	
16	RESERVED	uint32	-	Reserved for future use. Defaults to	o 0.	

SyncInMode

The SyncInMode register controls the behavior of the SyncIn event. If the mode is set to COUNT then the internal clock will be used to control the IMU sampling. If SyncInMode is set to IMU then the IMU sampling loop will run on a SyncIn event. The relationship between the SyncIn event and a SyncIn trigger is defined by the SyncInEdge and SyncInSkipFactor parameters. If set to ASYNC then the VN-200 will output asynchronous serial messages upon each trigger event.

Table 37 – Syncin Mode

Mode	Pin	Value	Description
COUNT	SYNC_IN	3	Count number of trigger events on SYNC_IN (pin 22).
IMU	SYNC_IN	4	Start IMU sampling on trigger of SYNC_IN (pin 22).
ASYNC	SYNC_IN	5	Output asynchronous message on trigger of SYNC_IN (pin 22).

SyncInEdge

The SyncInEdge register controls the type of edge the signal is set to trigger on. The factory default state is to trigger on a rising edge.

Table 38 – SyncInEdge Mode

Value	Description
0	Trigger on rising edge
1	Trigger on falling edge

SyncInSkipFactor

The SyncInSkipFactor defines how many times trigger edges defined by SyncInEdge should occur prior to triggering a SyncIn event. The action performed on a SyncIn event is determined by the SyncIn mode. As an example if the SyncInSkipFactor was set to 4 and a 1 kHz signal was attached to the SyncIn pin, then the SyncIn event would only occur at 200 Hz.

SyncOutMode

The SyncOutMode register controls the behavior of the SyncOut pin. If this is set to IMU then the SyncOut will start the pulse when the internal IMU sample loop starts. This mode is used to make a sensor the Master in a multi-sensor network array. If this is set to IMU_READY mode then the pulse will start when IMU measurements become available. If this is set to INS mode then the pulse will start when attitude measurements are made available. Changes to this register take effect immediately.

Table 39 – SyncOutMode

Mode	Value	Description
NONE	0	None
IMU_START	1	Trigger at start of IMU sampling
IMU_READY	2	Trigger when IMU measurements are available
INS	3	Trigger when attitude measurements are available
GPS_PPS	6	Trigger on a GPS PPS event (1 Hz) when a 3D fix is valid.

SyncOutPolarity

The SyncOutPolarity register controls the polarity of the output pulse on the SyncOut pin. Changes to this register take effect immediately.

Table 40 – SyncOutPolarity

Value	Description
0	Negative Pulse
1	Positive Pulse

SyncOutSkipFactor

The SyncOutSkipFactor defines how many times the sync out event should be skipped before actually triggering the SyncOut pin.

SyncOutPulseWidth

The SyncOutPulseWidth field controls the desired width of the SyncOut pulse. The default value is 100,000,000 (100 ms).

_

6.2.10 **Communication Protocol Control**

		Со	mmuni	cation Protocol Control		
	Register ID :	30		Firmware : 1.0.0.0	Access :	Read / Write
	Comment : Size (Bytes):	Contains paramete 7	ers that	controls the communication	protocol used by the V	N-200.
Exam	ple Response:	\$VNRRG,30,0,0,0,0	,1,0,1*6	5C		
Offset	Name	Format	Unit	Description		
0	SerialCount	uint8	-	Provides the ability to app the serial asynchronous m		to the end of
1	SerialStatus	uint8	-	Provides the ability to app serial asynchronous messa		nd of the
2	SPICount	uint8	-	Provides the ability to app packets.	end a counter to the er	nd of the SPI
3	SPIStatus	uint8	-	Provides the ability to app packets.	end the status to the e	nd of the SPI
4	SerialChecksun	n uint8	_	Choose the type of checks	um used for serial com	munications.
5	SPIChecksum	uint8	-	Choose the type of checks communications.	um used for the SPI	
6	ErrorMode	uint8	-	Choose the action taken w	hen errors are generat	ed.

Serial Count

The SerialCount field provides a means of appending a time or counter to the end of all asynchronous communication messages transmitted on the serial interface. The values for each of these counters come directly from the Synchronization Status Register (Register 33).

With the SerialCount field set to OFF a typical serial asynchronous message would appear as the following:

\$VNYPR,+010.071,+000.278,-002.026*60

With the SerialCount field set to one of the non-zero values the same asynchronous message would appear instead as:

\$VNYPR,+010.071,+000.278,-002.026,T1162704*2F

When the SerialCount field is enabled the counter will always be appended to the end of the message just prior to the checksum. The counter will be preceded by the T character to distinguish it from the status field.

Mode	Value	Description
NONE	0	OFF
SYNCIN_COUNT	1	Syncln Counter
SYNCIN_TIME	2	Syncln Time
SYNCOUT_COUNT	3	SyncOut Counter
GPS_PPS	4	Gps Pps Time

Table 41	 SerialCou 	nt Field
----------	-------------------------------	----------

SerialStatus

The SerialStatus field provides a means of tracking real-time status information pertaining to the overall state of the sensor measurements and onboard filtering algorithm. As with the SerialCount, a typical serial asynchronous message would appear as the following:

\$VNYPR,+010.071,+000.278,-002.026*60

With the SerialStatus field set to one of the non-zero values, the same asynchronous message would appear instead as:

\$VNYPR,+010.071,+000.278,-002.026,S0000*1F

When the SerialStatus field is enabled the status will always be appended to the end of the message just prior to the checksum. If both the SerialCount and SerialStatus are enabled then the SerialStatus will be displayed first. The counter will be preceded by the S character to distinguish it from the counter field. The status consists of 4 hexadecimal characters.

Table 42 – Serial	Status
-------------------	--------

Value	Description
0	OFF
1	VPE Status
2	INS Status

SPICount

The SPICount field provides a means of appending a time or counter to the end of all SPI packets. The values for each of these counters come directly from the Synchronization Status Register.

Mode	Value	Description
NONE	0	OFF
SYNCIN_COUNT	1	Syncln Counter
SYNCIN_TIME	2	Syncln Time
SYNCOUT_COUNT	3	SyncOut Counter
GPS_PPS	4	Gps Pps Time

Table 43 – SPICount Field

SPIStatus

The AsyncStatus field provides a means of tracking real-time status information pertaining to the overall state of the sensor measurements and onboard filtering algorithm. This information is very useful in situations where action must be taken when certain crucial events happen such as the detection of gyro saturation or magnetic interference.

Table 44 – SPIStatus

Value	Description
0	OFF
1	VPE Status
2	INS Status

SerialChecksum

This field controls the type of checksum used for the serial communications. Normally the VN-200 uses an 8-bit checksum identical to the type used for normal GPS NMEA packets. This form of checksum however offers only a limited means of error checking. As an alternative a full 16-bit CRC (CRC16-CCITT with polynomial = 0x07) is also offered. The 2-byte CRC value is printed using 4 hexadecimal digits.

Table 45 – SerialChecksu	m
--------------------------	---

Value	Description
1	8-Bit Checksum
3	16-Bit CRC

SPIChecksum

This field controls the type of checksum used for the SPI communications. The checksum is appended to the end of the binary data packet. The 16-bit CRC is identical to the one described above for the SerialChecksum.

Value	Description
0	OFF
1	8-Bit Checksum
3	16-Bit CRC

Table 46 – SPIChecksum

ErrorMode

This field controls the type of action taken by the VN-200 when an error event occurs. If the send error mode is enabled then a message similar to the one shown below will be sent on the serial bus when an error event occurs.

\$VNERR,03*72

Regardless of the state of the ErrorMode, the number of error events is always recorded and is made available in the SysErrors field of the Communication Protocol Status Register.

Table 47 – ErrorMode

Value	Description
0	Ignore Error
1	Send Error
2	Send Error and set ADOR register to OFF

Example Async Messages

The following table shows example asynchronous messages with the AsyncCount and the AsyncStatus values appended to the end.

Example Type	Message
Async Message with AsyncCount Enabled	\$VNYPR,+010.071,+000.278,-002.026,T1162704*2F
Async Message with AsyncStatus Enabled	\$VNYPR,+010.071,+000.278,-002.026,S0000*1F
Async Message with AsyncCount and AsyncStatus Enabled	\$VNYPR,+010.071,+000.278,-002.026,T1162704,S0000*50

6.2.11 Binary Output Register 1

	Binary Output Register 1							
	Register ID :	75		Firmware :	v1.0.0.0	Access :	Read / Write	
	Comment :	-			ruct a custom binary and sensor measuren		that contains a	
	Size (Bytes): 6-22							
Examp	le Response:	\$VNWRG,75,2,4	,1,8*XX					
Offset	Name	Format	Unit	Description				
0	AsyncMode	uint16	-	serial port(s)	her the output messa at a fixed rate.			
				port.	ser message is not au	-		
				-	is sent out serial port			
					is sent out serial port			
				3 = Message	is sent out both seria	I ports at a fixed I	ate.	
2	RateDivisor	uint16	-	serial port(s) is nominally	d rate at which the m . The number given is 800Hz. For example to uld set the Divisor eq	s a divisor of the I to have the senso	<i>muRate</i> which	
4	OutputGroup	o uint16	-	number of O	n output groups are a utputFields in this mo in the OutputGroup.	essage should equ		
6	OutputField(1) uint16	-	Active outpu	t fields for the first ac	ctive group.		
4+2*N	OutputField(N) uint16	-	Active outpu	t fields for the Nth ac	ctive group.		

See section 5.2 for information on the format for the Groups and Group Fields.

The size of this register is variable depending upon the number of group fields present. When writing to this register you must provide the same number of group fields as there are bits active in the group byte. If this condition is not met, the unit will respond with an invalid parameter error code on a write register attempt.

The maximum size of a binary packet must not exceed 600 bytes. If you attempt to specify an output group and output fields for a packet with a length greater than 600 bytes (including the header and CRC), you will receive an invalid parameter error when writing to this register.

6.2.12 Binary Output Register 2

	Binary Output Register 2							
	Register ID :	76		Firmware :	v1.0.0.0	Access :	Read / Write	
	Comment :	-			ruct a custom binary and sensor measure		that contains a	
	Size (Bytes): 6-22							
Examp	le Response:	\$VNWRG,76,2,4	,1,8*XX					
Offset	Name	Format	Unit	Description				
0	AsyncMode	uint16	-	serial port(s	ther the output mess) at a fixed rate.	-		
				0 = None. U port.	ser message is not a	utomatically sent c	out either serial	
				1 = Message	is sent out serial po	rt 1 at a fixed rate.		
			2 = Message is sent out serial port 2 at a fixed rate.					
				3 = Message	is sent out both seri	al ports at a fixed r	ate.	
2	RateDivisor	uint16	-	serial port(s is nominally 50Hz you wo	d rate at which the n). The number given i 800Hz. For example ould set the Divisor e t the divisor to 1.	is a divisor of the I to have the senso	muRate which r output at	
4	OutputGrou	o uint16	-	number of C	h output groups are a DutputFields in this m s in the OutputGroup	nessage should equ	-	
6	OutputField(1) uint16	-	Active outpu	ut fields for the first a	active group.		
4+2*N	OutputField(N) uint16	-	Active outpu	ut fields for the Nth a	ctive group.		

See section 5.2 for information on the format for the Groups and Group Fields.

The size of this register is variable depending upon the number of group fields present. When writing to this register you must provide the same number of group fields as there are bits active in the group byte. If this condition is not met, the unit will respond with an invalid parameter error code on a write register attempt.

The maximum size of a binary packet must not exceed 600 bytes. If you attempt to specify an output group and output fields for a packet with a length greater than 600 bytes (including the header and CRC), you will receive an invalid parameter error when writing to this register.

6.2.13 Binary Output Register 3

			Binary Output Register 3							
	Register ID :	77		Firmware :	v1.0.0.0	Access :	Read / Write			
	Comment :				ruct a custom binary o and sensor measureme		that contains a			
	Size (Bytes): 6-22									
Examp	le Response:	\$VNWRG,77,2	2,4,1,8*)	κx						
Offset	Name	Format	Unit	Description						
0	AsyncMode	uint16	-	serial port(s) a	er the output message : t a fixed rate. r message is not autom					
				port.		,				
					sent out serial port 1 a	at a fixed rate.				
				-	sent out serial port 2 a					
				3 = Message is	sent out both serial po	orts at a fixed rat	e.			
2	RateDivisor	uint16	-	serial port(s). T nominally 800	ate at which the messa The number given is a c Hz. For example to hav the Divisor equal to 4. to 1.	livisor of the <i>Im</i> ve the sensor ou	uRate which is tput at 50Hz			
4	OutputGroup	o uint16			output groups are activ Is in this message shou putGroup.	-				
6	OutputField(1) uint16	-	Active output	fields for the first active	e group.				
4+2*N	OutputField(N) uint16	-	Active output	fields for the Nth active	e group.				

See section 5.2 for information on the format for the Groups and Group Fields.

The size of this register is variable depending upon the number of group fields present. When writing to this register you must provide the same number of group fields as there are bits active in the group byte. If this condition is not met, the unit will respond with an invalid parameter error code on a write register attempt.

The maximum size of a binary packet must not exceed 600 bytes. If you attempt to specify an output group and output fields for a packet with a length greater than 600 bytes (including the header and CRC), you will receive an invalid parameter error when writing to this register.

6.3 Status Registers

6.3.1 Synchronization Status

		S	ynchroi	nization Status			
Register ID : Comment : Size (Bytes):	33Firmware :v1.0.0.0Access :Read / WriteContains status parameters that pertaining to the communication synchronization features.12						
Example Response:	\$VNRRG,33,255	2498,0,0*	6A				
Offset	Name	Format	Unit	Description			
0	SyncInCount	uint32	-	Keeps track of the number of times that the SyncIn trigger even has occured. This register can be used to correlate the attitude to an event on an external system such as a camera or GPS. It is also possible to have the value of this register appended to each asynchronous data packet on the serial bus. This can be done by setting the AsyncStatus field in the Communication Protocol register to 1.			
4	SyncInTime	uint32	μs	Keeps track of the amount of time that has elapsed since the last SyncIn trigger event. If the SyncIn pin is connected to the PPS (Pulse Per Second) line on a GPS and the AsyncStatus field in the Communication Protocol Register is set to 1, then each asynchronous measurement will be time stamped relative to the last received GPS measurement.			
8	SyncOutCount	uint32	-	Keeps track of the number of times that the SyncOut trigger event has occurred. This register can be used to index subsequent measurement outputs, which is particularly useful when logging sensor data.			

i

Writing zero to the SynclnCount or the SyncOutCount will reset the status counter. Any other value other than zero will not have an effect. The SyncInTime is read only and cannot be reset to zero.

6.4 Factory Defaults

Settings Name	Default Factory Value
User Tag	NULL (Empty string)
Serial Baud Rate	115200
Async Data Output Frequency	40 Hz
Async Data Output Type	INS_LLA
Synchronization Control	3,0,0,0,6,1,0,10000000,0
Communication Protocol Control	0,0,0,0,1,0,1
Binary Output Register 1	0, 0, 0
Binary Output Register 2	0, 0, 0
Binary Output Register 3	0, 0, 0

6.5 **Command Prompt**

The command prompt provides a fast and simple means of configuring and monitoring the status of the sensor by typing commands to the unit using the serial port.

6.5.1 List Available Commands

Commands for the System subsystem can be accessed by typing in 'system' at the command prompt. To view all available commands, type 'system ?'. Below is a view of a terminal window showing a list of the available commands.

```
system ?
System Module Commands:
Command: Description:
-----
info Device specific information such as serial number and firmware version.
comm Information on the communication interfaces.
errors Overview of the logged system errors.
reset Perform a software reset on the unit.
save Save register settings to flash memory.
restore Restore register settings to their factory default state.
```

6.5.2 System Info

```
system info
------ System Info ------
Hardware:
    Product Model: VN-200S-DEV
    Serial Number: 100013003
MCU Serial Number: 34323439044731322F002100
Hardware Revision: 2
    Form Revision: 1
Software:
    Firmware Version: 1.0.0.0
        Revision: 592
Build Number: 1079
```

6.5.3 System Comm

```
system comm
----- System Communication Interfaces -----
Communication Stats:
   Serial Messages Parsed : 29
   Spi Messages Parsed : 0
   Max Serial RX Buffer Usage : 0
   Max Serial TX Buffer Usage : 4
   Max Spi RX Buffer Usage : 0
   Max Spi TX Buffer Usage : 0
```



```
Current Serial 1 TX Bandwidth Usage : 00.0
Current Serial 2 TX Bandwidth Usage : 49.3
Max Serial 1 TX Bandwidth Usage : 49.3
Max Serial 2 TX Bandwidth Usage : 50.5
Min Serial 1 TX Bandwidth Usage : 00.0
Min Serial 2 TX Bandwidth Usage : 48.1
```

6.5.4 System Errors

6.5.5 System Reset

system reset

6.5.6 System Save

system save

7 IMU Subsystem

7.1 IMU Measurement Registers

7.1.1 IMU Measurements

This register provides direct access to the calibrated magnetometer, accelerometer, gyro, barometric pressure, and temperature measurements available from the onboard IMU.

			IMU Measu	urement	S	
	Register ID: 54 A		Async Header :	IMU	Access : Read Only	
	Comment : Provides the calibrated IMU measurements including barometric pressu					
	Size (Bytes):	44				
E	xample Read	\$VNRRG,54,-02.08	41,+00.6045,+02.8	8911,+00	.381,-00.154,-09.657,-00.005683,	
	Response:	+00.000262,+00.00)1475,+21.6,+0009	9.761*5	В	
Offset	t Name		Format	Unit	Description	
0	MagX		float	Gauss	Uncompensated Magnetic X-axis.	
4	MagY		float	Gauss	Uncompensated Magnetic Y-axis.	
8	MagZ		float	Gauss	Uncompensated Magnetic Z-axis.	
12	AccelX		float	m/s ²	Uncompensated Acceleration X-axis.	
16	AccelY		float	m/s ²	Uncompensated Acceleration Y-axis.	
20	AccelZ		float	m/s ²	Uncompensated Acceleration Z-axis.	
24	GyroX		float	rad/s	Uncompensated Angular rate X-axis.	
28	GyroY		float	rad/s	Uncompensated Angular rate Y-axis.	
32	GyroZ		float	rad/s	Uncompensated Angular rate Z-axis.	
36	Temp		float	С	IMU Temperature.	
40	Pressure		float	kPa	Barometric pressure.	

You can configure the device to output this register at a fixed rate using the Async Data Output Type register (Register 6). Once configured the data in this register will be sent out with the \$VNIMU header.

7.1.2 Delta Theta and Delta Velocity

Delta Theta and Delta Velocity							
	Register ID :	80	Async H	leader:	DTV	Access : Read	
	Comment :	This register contains	the outp	out value	es of the on	board coning and sculling algorithm.	
	Size (Bytes):	28					
Examp	ole Response:	\$VNRRG,80,+0.66501	6,-000.1	19,-000.	409,-000.0	25,+000.011,-000.084,-006.702*6A	
Offset	Name	Format	Unit	Descri	iption		
0	DeltaTime	float	sec	Delta	time for th	e integration interval	
4	DeltaThetaX	float	deg	Delta	rotation ve	ctor component in the x-axis.	
8	DeltaThetaY	float	deg	Delta	rotation ve	ector component in the y-axis.	
12	DeltaThetaZ	float	deg	Delta	rotation ve	ector component in the z-axis.	
16	DeltaVelocity	/X float	m/s	Delta	velocity ve	ctor component in the x-axis.	
20	DeltaVelocity	/Y float	m/s	Delta	velocity ve	ctor component in the y-axis.	
24	DeltaVelocity	/Z float	m/s	Delta	velocity ve	ctor component in the z-axis.	

The Delta Theta and Delta Velocity register contains the computed outputs from the onboard coning and sculling algorithm. The coning and sculling integrations are performed at the IMU sample rate (nominally at 800Hz) and reset when the register data is output. If polling this register, the values will represent the delta time, angles, and velocity since the register was last polled. If the Delta Theta/Velocity data is selected for asynchronous output via the Async Data Output Type register (Register 6, type 30), the integrals will be reset each time the data is asynchronously output at the configured rate.

The delta time output contains the length of the time interval over which the deltas were calculated. This can be used to check the interval time or to compute nonlinear "average" rates and accelerations from the integrated values.

The delta theta is output as a principal rotation vector, defined as the product of the unit vector of the principal rotation axis and the principal rotation angle in degrees. For small rotations, a typical use case for delta angles, the principal rotation vector elements may be treated individually as rotations in degrees about the individual sensor axes (in any Euler rotation sequence) with little error.

The delta velocity output provides the integration of the acceleration in the chosen frame, taking into account the coupling effects of any simultaneous rotation experienced.

The coning and sculling algorithm can be configured to operate in multiple frames and with a variety of compensations applied. See the Delta Theta and Delta Velocity Configuration register (Register 82) for further details.

You can configure the device to output this register at a fixed rate using the Async Data Output Type register (Register 6). Once configured the data in this register will be sent out with the \$VNDTV header.

7.2 IMU Configuration Registers

7.2.1 Magnetometer Compensation

			Ma	gnetometer Compensatic	on		
	Register ID :	23		Firmware :	1.0.0.0	Access:	Read / Write
	Comment :	Allows th	ne magne	tometer to be compensat	ed for hard,	/soft iron effects.	
	Size (Bytes):	48					
I	Example Command:	\$VNRRG,	23,1,0,0,	0,1,0,0,0,1,0,0,0*73			
Offse	et Name	Format	Unit	Description			
0	C[0,0]	float	-				
4	C[0,1]	float	-				
8	C[0,2]	float	-				
12	C[1,0]	float	-				
16	C[1,1]	float	-				
20	C[1,2]	float	-				
24	C[2,0]	float	-				
28	C[2,1]	float	-				
32	C[2,2]	float	-				
36	B[0]	float	-				
40	B[1]	float	-				
44	B[2]	float	-				

This register contains twelve values representing the hard and soft iron compensation parameters. The magnetic measurements are compensated for both hard and soft iron using the following model. Under normal circumstances this register can be left in its factory default state. In the event that there are disturbances in the magnetic field due to hard or soft iron effects, then these registers allow for further compensation. These registers can also be used to compensate for significant changes to the magnetometer bias, gain, and axis alignment during installation. Note that this magnetometer compensation is separate from the compensation that occurs during the calibration process at the factory. Setting this register to the default state of an identity matrix and zero offset will not eliminate the magnetometer gain, bias, and axis alignment that occur during factory calibration. These registers only need to be changed from their default values in the event that hard/soft iron compensation needs to be performed, or changes in bias, gain, and axis alignment have occurred at some point between the times the chip was calibrated at the factory and when it is used in the field.

(X)	[<i>C</i> 00	<i>C</i> 01	C02]	(MX - B0)
${Y} =$	<i>C</i> 10	<i>C</i> 11	C12	$\cdot \begin{cases} MX - B0 \\ MY - B1 \\ MZ - B2 \end{cases}$
(Z)	LC20	C21	C22]	(MZ - B2)

The variables $\{MX, MY, MZ\}$ are components of the measured magnetic field. The $\{X, Y, Z\}$ variables are the new magnetic field measurements outputted after compensation for hard/soft iron effects. All twelve numbers are represented by single-precision floating points.

7.2.2 Acceleration Compensation

	Accelerometer Compensation								
	Register ID :	25	Firmware :	1.0.0.0	Access : Read / Write				
	Comment :	Allows the accel bias errors.	erometer to be	further comp	ensated for scale factor, misalignment, and				
	Size (Bytes):	48							
Exam	ple Command:	\$VNRRG,25,1,0,0	0,0,1,0,0,0,1,0,0	0,0*75					
Offset	Name	Format	Unit Des	scription					
0	C[0,0]	float	-						
4	C[0,1]	float	-						
8	C[0,2]	float	-						
12	C[1,0]	float	-						
16	C[1,1]	float	-						
20	C[1,2]	float	-						
24	C[2,0]	float	-						
28	C[2,1]	float	_						
32	C[2,2]	float	_						
36	B[0]	float	-						
40	B[1]	float	-						
44	B[2]	float	-						

This register contains twelve values representing the accelerometer compensation parameters. The accelerometer measurements are compensated for changes in bias, gain, and axis alignment that can occur during the installation of the chip on the customer's board using the following model. Under normal circumstances this register can be left in its factory default state. In the event that there are significant changes to the accelerometer bias, gain, and axis alignment during installation, then these registers allow for further compensation. Note that this accelerometer compensation is separate from the compensation that occurs during the calibration process at the factory. Setting this register to the default state of an identity matrix and zero offset will not eliminate the accelerometer gain, bias, and axis alignment that occur during factory calibration. These registers only need to be changed from their default values in the event that changes in bias, gain, and axis alignment have occurred at some point between the times the chip was calibrated at the factory and when it is used in the field.

(X)	[<i>C</i> 00	<i>C</i> 01	C02]	(AX - B0)
Y =	: C10	<i>C</i> 11	C12	$ \left\{\begin{array}{l} AX - B0\\ AY - B1\\ AZ - B2 \end{array}\right\} $
(Z)	LC20	C21	C22]	(AZ - B2)

The variables {AX,AY,AZ} are components of the measured acceleration. The {X, Y, Z} variables are the new acceleration measurements outputted after compensation for changes during sensor mounting. All twelve numbers are represented by single-precision floating points.

7.2.3 Gyro Compensation

Gyro Compensation								
	Register ID :	84	Firmware	: v1.0.0.0 Access :	Read / Write			
	Comment :	Allows the gyro to	be further	compensated for scale factor, misalign	ment, and bias errors.			
	Size (Bytes):	48						
Exam	ple Command:	\$VNRRG,84,1,0,0,	0,1,0,0,0,1,	0,0,0*7E				
Offset	Name	Format	Unit D	escription				
0	C[0,0]	float	-					
4	C[0,1]	float	-					
8	C[0,2]	float	-					
12	C[1,0]	float	-					
16	C[1,1]	float	-					
20	C[1,2]	float	-					
24	C[2,0]	float	-					
28	C[2,1]	float	-					
32	C[2,2]	float	-					
36	B[0]	float	-					
40	B[1]	float	-					
44	B[2]	float	-					

This register contains twelve values representing the gyro compensation parameters. The gyro measurements are compensated for changes in bias, gain, and axis alignment that can occur during the installation of the chip on the customer's board using the following model. Under normal circumstances this register can be left in its factory default state. In the event that there are significant changes to the gyro bias, gain, and axis alignment during installation or during the life of the part; these registers allow for further compensation. Note that this gyro compensation is separate from the compensation that occurs during the calibration process at the factory. Setting this register to the default state of an identity matrix and zero offset will not eliminate the gyro gain, bias, and axis alignment that occur during factory calibration. These registers only need to be changed from their default values in the event that changes in bias, gain, and axis alignment have occurred at some point between the times the chip was calibrated at the factory and when it is used in the field.

(X)	[<i>C</i> 00	<i>C</i> 01	C02]	(GX - B0)
Y =	: C10	<i>C</i> 11	C12 ·	$ \begin{cases} GX - B0\\ GY - B1\\ GZ - B2 \end{cases} $
(Z)	LC20	C21	C22]	(GZ - B2)

The variables {GX, GY, GZ}_{IMU} are components of the measured angular rate. The {GX, GY, GZ}_{Comp} variables are the new acceleration measurements outputted after compensation for changes during sensor mounting. All twelve numbers are represented by single-precision floating points.

7.2.4 **Reference Frame Rotation**

			Refere	nce Frame Rotation			
	Register ID :	26		Firmware :	1.0.0.0	Access :	Read / Write
	Comment :	Allows the measur	ements	of the VN-200 to be	rotated into	a different refere	ence frame.
	Size (Bytes):	36					
Exam	ple Response:	\$VNRRG,26,1,0,0,0),1,0,0,0	,1*6A			
Offset	Name	Format	Unit	Description			
0	C[0,0]	float	-				
4	C[0,1]	float	-				
8	C[0,2]	float	-				
12	C[1,0]	float	-				
16	C[1,1]	float	-				
20	C[1,2]	float	-				
24	C[2,0]	float	-				
28	C[2,1]	float	-				
32	C[2,2]	float	-				

This register contains a transformation matrix that allows for the transformation of measured acceleration, magnetic, and angular rates from the body frame of the VN-200 to any other arbitrary frame of reference. The use of this register allows for the sensor to be placed in any arbitrary orientation with respect to the user's desired body coordinate frame. This register can also be used to correct for any orientation errors due to mounting the VN-200 on the user's circuit board.

(X)	[<i>C</i> 00]	<i>C</i> 01	C02]	(X)
$ \begin{cases} X \\ Y \\ Z \\ U \end{cases} =$	C10	C11	C12 ·	Y
$(Z)_U$	LC20	C21	C22]	$(Z)_B$

The variables $\{X, Y, Z\}_B$ are a measured parameter such as acceleration in the body reference frame with respect to the VN-200. The variables $\{X, Y, Z\}_U$ are a measured parameter such as acceleration in the user's frame of reference. The reference frame rotation register thus needs to be loaded with the transformation matrix that will transform measurements from the body reference frame of the VN-200 to the desired user frame of reference. It is crucial that these two frames of reference be rigidly attached to each other. All nine numbers are represented by single-precision floating points.

The reference frame rotation is performed on all vector measurements prior to entering the INS filter. As such, changing this register while the attitude filter is running will lead to unexpected behavior in the INS output. To prevent this, the register is cached on startup and changes will not take effect during runtime. After setting the reference frame rotation register to its new value, send a write settings command and then reset the VN-200. This will allow the INS filter to startup with the newly set reference frame rotation.

7.2.5 IMU Filtering Configuration

		l	MU Filter	ing Configuration	
	Register ID: 85		Firm	ware: v1.0.0.0	Access: Read / Write
	Comment : Control	s the level of t	filtering p	erformed on the raw IMU m	leasurements.
	Size (Bytes): 15				
		6,85,0,5,5,5,0	,0,3,3,3,0		
Offset		Format	Unit	Description	
0	MagWindowSize	uint16	-	Number of previous meas measurements.	urements averaged for magnetic
2	AccelWindowSize	uint16	-	Number of previous meas acceleration measuremen	_
4	GyroWindowSize	uint16	-	Number of previous meas measurements.	urements averaged for gyro
6	TempWindowSize	uint16	-	Number of previous meas temperature measuremer	-
8	PresWindowSize	uint16	-	Number of previous meas measurements.	urements averaged for pressure
10	MagFilterMode	uint8	-	Filtering mode for magnet See table below for optior	
11	AccelFilterMode	uint8	-	Filtering mode for accelera See table below for option	
12	GyroFilterMode	uint8	-	Filtering mode for gyro me See table below for option	easurements.
13	TempFilterMode	uint8	-	Filtering mode for temper See table below for optior	ature measurements.
14	PresFilterMode	uint8	-	Filtering mode for pressur See table below for optior	e measurements.

This register allows the user to configure the FIR filtering what is applied to the IMU measurements. The filter is a uniformly-weighted moving window (boxcar) filter of configurable size. The filtering does not affect the values used by the internal filter, but only the output values.

WindowSize

The WindowSize parameters for each sensor define the number of samples at the IMU rate (default 800Hz) which will be averaged for each output measurement.

FilterMode

The FilterMode parameters for each sensor select which output quantities the filtering should be applied to. Filtering can be applied to either the uncompensated IMU measurements, compensated (HSI and biases compensated by onboard filters, if applicable), or both.

Value	Description
0	No Filtering
1	Filtering performed only on raw uncompensated IMU measurements.
2	Filtering performed only on compensated IMU measurements.
3	Filtering performed on both uncompensated and compensated IMU measurements.

Table 48 - IMU Filtering Modes

7.2.6 **Delta Theta and Delta Velocity Configuration**

	Delta Theta and Delta Velocity Configuration								
	Register ID :	82		Firmw	are: v1.0.0.0	Access :	Read / Write		
	Comment :	This register	contains co	onfigurati	on options for the internal o	coning/sculling ca	alculations		
	Size (Bytes):	6							
Examp	e Response:	\$VNRRG,82,0	,0,0,0,0*6	5					
Offset	Name		Format	Unit	Description				
0	IntegrationF	rame	uint8	-	Output frame for delta ve	locity quantities			
1	GyroCompe	nsation	uint8	-	Compensation to apply to	angular rate			
2	2 AccelCompensation		uint8	-	Compensation(s) to apply	to accelerations			
3	Reserved		uint8	-	Reserved for future use.	Should be set to	0.		
4	Reserved		uint16	-	Reserved for future use.	Should be set to	0.		

The Delta Theta and Delta Velocity Configuration register allows configuration of the onboard coning and sculling used to generate integrated motion values from the angular rate and acceleration IMU quantities. The fully-coupled coning and sculling integrals are computed at the IMU sample rate (nominal 800 Hz).

IntegrationFrame

The IntegrationFrame register setting selects the reference frame used for coning and sculling. Note that using any frame other than the body frame will rely on the onboard Kalman filter's attitude estimate. The factory default state is to integrate in the sensor body frame.

Table 49 – IntegrationFrame

Value	Description	
0	Body frame	
1	NED frame	

GyroCompensation

The GyroCompensation register setting selects the compensation to be applied to the angular rate measurements before integration. If bias compensation is selected, the onboard Kalman filter's real-time estimate of the gyro biases will be used to compensate the IMU measurements before integration. The factory default state is to integrate the uncompensated angular rates from the IMU.

Table 50 -	GyroComp	ensation
------------	----------	----------

Value	Description	
0	None	
1	Bias	

AccelCompensation

The AccelCompensation register setting selects the compensation to be applied to the acceleration measurements before integration. If bias compensation is selected, the onboard Kalman filter's real-time estimate of the accel biases will be used to compensate the IMU measurements before integration. The factory default state is to integrate the uncompensated acceleration from the IMU.

Table 51 – AccelCompensation

7.3 Factory Defaults

Settings Name	Default Factory Value
Magnetometer Compensation	1,0,0,0,1,0,0,0,1,0,0,0
Accelerometer Compensation	1,0,0,0,1,0,0,0,1,0,0,0
Gyro Compensation	1,0,0,0,1,0,0,0,1,0,0,0
Reference Frame Rotation	1,0,0,0,1,0,0,0,1
IMU Filtering Configuration	0,4,4,4,0,0,3,3,3,0
Delta Theta and Delta Velocity	0,0,0,0,0
Configuration	

7.4 **Command Prompt**

The command prompt provides a fast and simple means of configuring and monitoring the status of the sensor by typing commands to the unit using the serial port.

7.4.1 List Available Commands

Commands for the System subsystem can be accessed by typing in 'imu' at the command prompt. To view all available commands, type 'imu ?'. Below is a view of a terminal window showing a list of the available commands.

```
imu ?
Imu Module Commands:
Command: Description:
info Imu specific information such as serial number and firmware version.
meas Current Imu measurement, and run-time statistics.
```

7.4.2 IMU Info

imu info ----- Imu Information ------Magnetometer - HSI Settings (Register 44) Mode : Using Onboard Magnetometer - User HSI Calibration (Register 23) +01.000 +00.000 +00.000 +00.000 +00.000 +01.000 +00.000 +00.000 +00.000 +00.000 +01.000 +00.000 Magnetometer - Onboard HSI Calibration (Register 47) +01.000 +00.000 +00.000 -00.000 +00.000 +01.000 +00.000 -00.000 +00.000 +00.000 +01.000 -00.000 Accelerometer - User Calibration (Register 25) +01.000 +00.000 +00.000 +00.000 +00.000 +01.000 +00.000 +00.000 +00.000 +00.000 +01.000 +00.000 Sensor Self Test: (performed at startup) Mag : Passed Accel : Passed Gyro : Passed Pres : Passed _____

7.4.3 IMU Meas

imu meas

```
----- Imu Measurement -----
Current Sensor Measurements:
  Mag X : -000.866 [Gauss]
  Mag Y : +001.016 [Gauss]
  Mag Z : +002.365 [Gauss]
  Acel X : +004.178 [m/s]
   Acel Y : -000.637 [m/s]
   Acel Z : -008.927 [m/s]
Gyro X : -000.417 [deg/s]
Gyro Y : +000.668 [deg/s]
Gyro Z : -001.102 [deg/s]
   Temp : +027.94 [C]
    Temp Rate: +0.04 [C/min]
   Pres : +101.36 [kPa]
Current Sensor Noise: (measured over last 5 seconds)
   Sensor Units X-Axis Y-Axis Z-Axis

        Mag
        mGauss
        +03.228
        +02.934
        +04.159

        Accel
        mg
        +01.854
        +02.115
        +02.872

        Gyro
        deg/s
        +0.0631
        +0.0544
        +0.0580

        Temp
        C
        +0.0026
        +007.36

Minimum Sensor Noise: (since startup)

      Sensor
      Units
      X-Axis
      Y-Axis
      Z-Axis

      Mag
      mGauss
      +02.877
      +02.659
      +03.673

      Accel
      mg
      +01.785
      +01.966
      +02.599

      Gyro
      deg/s
      +0.0587
      +0.0487
      +0.0537

      Temp
      C
      +0.0011
      Pres
      Pa
      +006.13

Minimum Sensor Measurement: (since startup)
  Sensor Units X-Axis Y-Axis Z-Axis
Mag Gauss -00.236 +00.244 +00.577

      Accel
      g
      +00.414
      -00.077
      -00.949

      Gyro
      deg/s
      -002.92
      -005.33
      -002.03

      Temp
      C
      +27.83

      Pres
      kPa
      +101.30

Maximum Sensor Measurement: (since startup)
   SensorUnitsX-AxisY-AxisZ-AxisMagGauss+00.000+00.271+00.611

      Mag
      Gauss
      +00.000
      +00.271
      +00.611

      Accel
      g
      +00.439
      +00.000
      +00.000

      Gyro
      deg/s
      +002.02
      +006.44
      +000.00

      Temp
      C
      +28.01
      +28.01
      +101.38

Sensor Saturation Events: (since startup)
   Sensor X-Axis Y-Axis Z-Axis
  Mag000Accel000Gyro000Pressure00
                    0
   Temp
_____
                                                                                    _____
```


8 GPS Subsystem

8.1 Measurement Registers

8.1.1 GPS Solution - LLA

				GPS Solution - LLA		
	Register ID :	58		Async Header: GPS	Access :	Read Only
	Comment :					
	Size (Bytes):	72				
	Example Read			3.000159,1694,3,05,+32.95622080,-(
	Response:			002.860,+005.573,+003.644,+009.76	50,+003.320,2.00E-08	*0E
Offset		Format	Unit	Description		
0	Time	double	sec	GPS time of week in seconds.		
8	Week	uint16	week	GPS week.		
10	GpsFix	uint8	-	GPS fix type. See table below.		
11	NumSats	uint8	-	Number of GPS satellites used in so	olution.	
12	-	-	-	4 PADDING BYTES		
16	Latitude	double	deg	Latitude in degrees.		
24	Longitude	double	deg	Longitude in degrees.		
32	Altitude	double	m	Altitude above ellipsoid. (WGS84)		
40	NedVelX	float	m/s	Velocity measurement in north dire	ection.	
44	NedVelY	float	m/s	Velocity measurement in east direct	ction.	
48	NedVelZ	float	m/s	Velocity measurement in down dir	ection.	
52	NorthAcc	float	m	North position accuracy estimate.	(North)	
56	EastAcc	float	m	East position accuracy estimate. (E	ast)	
60	VertAcc	float	m	Vertical position accuracy estimate	e. (Down)	
64	SpeedAcc	float	m/s	Speed accuracy estimate.		
68	TimeAcc	float	sec	Time accuracy estimate.		

Table 52 - GPS Fix

Value	Description
0	No fix
1	Time only
2	2D
3	3D

You can configure the device to output this register at a fixed rate using the Async Data Output Type register (Register 6). Once configured the data in this register will be sent out with the \$VNGPS header.

8.1.2 **GPS Solution - ECEF**

GPS Solution – ECEF								
	Register ID :	59		Async Header :	GPE	Access :	Read Only	
	Comment :	Available a	t 5Hz only	/.				
	Size (Bytes):	72						
	Example Read	\$VNRRG,59	9,333752.	800322,1694,3,	06,-0626351.600,-53	20522.490,+3449975	5.910,-	
	Response:	000.810,-0	02.970,+0		0,+010.170,+010.170),+002.740,1.80E-08 ³	*35	
Offse	t Name	Format	Unit	Description				
0	Tow	double	sec	GPS time of we	eek.			
8	Week	uint16	week	Current GPS w	eek.			
10	GpsFix	uint8	-	GPS fix type. S	ee table below.			
11	NumSats	uint8	-	Number of GP	S satellites used in so	lution.		
12	-	-	-	4 PADDING	i BYTES			
16	PositionX	double	m	ECEF X coordir	nate.			
24	PositionY	double	m	ECEF Y coordir	nate.			
32	PositionZ	double	m	ECEF Z coordir	nate.			
40	VelocityX	float	m/s	ECEF X velocity	/.			
44	VelocityY	float	m/s	ECEF Y velocity	/.			
48	VelocityZ	float	m/s	ECEF Z velocity	/.			
52	PosAccX	float	m	ECEF X position	n accuracy estimate.			
56	PosAccY	float	m	ECEF Y positio	n accuracy estimate.			
60	PosAccZ	float	m	ECEF Z positio	n accuracy estimate.			
64	SpeedAcc	float	m/s	Speed accurac	y estimate.			
68	TimeAcc	float	sec	Time accuracy	estimate.			

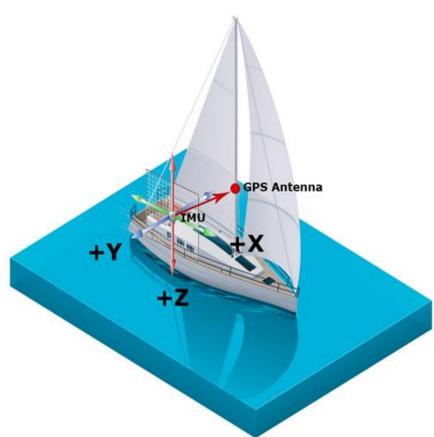
Table 53 - GPS Fix

Value	Description			
0	No fix			
1	Time only			
2	2D			
3	3D			

You can configure the device to output this register at a fixed rate using the Async Data Output Type register (Register 6). Once configured the data in this register will be sent out with the \$VNGPE header.

8.2 **Configuration Registers**

8.2.1 **GPS Configuration**


GPS Configuration								
Register II Commen		Fi	rmware: 1.0.0.0	Access : Read / Write				
Size (Byte	s): 5							
Example Respons	e: \$VNWRG,55,0,0,5	,0,0*6F						
Offset Name	Forma	_	Description					
0 Mode	uint8	-	GPS mode.					
			0 = Use onboard GPS.					
			1 = Use external GPS.					
			2 = Use external VN-200 a	s GPS.				
1 PpsSour	ce uint8	-	and should trigger on a ris 1 = GPS PPS signal is prese and should trigger on a fal 2 = GPS PPS signal is prese should trigger on a rising e	ent on the GPS_PPS pin (pin 24) lling edge. ent on the SyncIn pin (pin 22) and edge. ent on the SyncIn pin (pin 22) and				
2 Reserved	d uint8	-	Reserved for internal use.	-				
3 Reserved	d uint8	-	Reserved for future use. F	ield should be set to zero.				
4 Reserved	l uint8	-	Reserved for future use. F	ield should be set to zero.				

8.2.2 GPS Antenna Offset

GPS Antenna Offset										
Register ID :		57	Fir	mware: 1.0.0.0	Access :	Read / Write				
Comment :		Configures the position frame.	on offset	of the GPS antenna from the VN-2	00 in the ve	hicle reference				
Size (Bytes):		12								
Example Response:		\$VNRRG,57,0,0,0*68								
Offset	Name	Format	Unit	Description						
0	PositionX	float	m	Relative position of GPS antenna.	(X-axis)					
4	PositionY	float	m	Relative position of GPS antenna.	(Y-axis)					
8	PositionZ	float	m	Relative position of GPS antenna.	(Z-axis)					

The position of the GPS antenna relative to the sensor in the vehicle coordinate frame also referred to as the GPS antenna lever arm. In the example scenario shown in Figure 8 below, the GPS antenna offset is X = +2.5m, Y = +0.0m, Z = -2.0m.

8.3 Factory Defaults

Settings Name	Default Factory Value
GPS Configuration	0,0,5,0,0
GPS Antenna Offset	0,0,0

8.4 **Command Prompt**

The command prompt provides a fast and simple means of configuring and monitoring the status of the sensor by typing commands to the unit using the serial port.

8.4.1 List Available Commands

Commands for the System subsystem can be accessed by typing in 'gps' at the command prompt. To view all available commands, type 'gps ?'. Below is a view of a terminal window showing a list of the available commands.

```
gps ?
Gps Module Commands:
Command: Description:
meas Current gps measurement, signal strength, and visible satellites.
```

8.4.2 **GPS Meas**

				Gps Mea	asurem	ent				
ps So	olution	n:		Ť						
Sat	s visik	ole : 1	8							
Sat	s used	: 1	4							
Lat	itude	: +	32.89195060 d	deg						
Lone	gitude	: -	096.70376560	deg						
Alt	itude	: +	00165.150 m							
Pos	Acc	: 0	5.94 07.83	05.26 m						
Vel	Acc	: 0	0.59 m/s							
Time	e Acc	: 2	ns							
-		le Info		Mere	04		7 –	O sele i t	II. o. l. + h	DCDC
Ch 14	SV 1	CN0 40	Residual +0.11	Nav Y	Qi 7	El 15	Az 142	Eph	Healthy Y	DGPS Y
2		40	+0.11	Y	7	28	142 44	Eph		т Ү
5		43 37	+0.40	Y	7	20	44	Eph		т Ү
6		50	-0.53	Y	7	, 71	40 6	Eph		т Ү
7		47	+0.29	Y	7	42	322	Eph	Y	т Ү
8	9	47	-0.58	Y	7	42	322	Eph	Y	Y
10	11	43	-0.32	Y	7	35	125	Eph	Y	Y
12	13	43	+0.40	Y	7	45	186	Eph	Y	Y
0	19	47	+0.15	Y	7	4J 51	57	Eph	Y	Y
1	23	42	-1.36	Y	7	18	170	Eph	Y	Y
4	27	41	+0.19	Y	7	18	41	Eph	Y	Y
3	28	48	-0.33	Y	7	36	273	Eph	Y	Y
11	135	47	+0.68	Y	7	36	233	Eph	Y	N
13	138	49	+0.25	Ŷ	7	50	199	Eph	Y	N
9	10	30	+0.00	N	7	3	244	Eph	Y	N
	17	0	+0.00	N	0	4	210		Y	N
255		0	+0.00	N	0	5	324		Y	N
255 255	26									

9 Attitude Subsystem

9.1 Measurement Registers

9.1.1 Yaw Pitch Roll

Yaw, Pitch, and Roll										
	Register ID :	8		Async Header : YP	PR	Access :	Read Only			
	Comment :	Attitude solution as yaw, pitch, and roll in degrees. The yaw, pitch, and roll is								
	given as a 3,2,1 Euler angle rotation sequence describing the orientation of sensor with respect to the inertial North East Down (NED) frame.									
	Size (Bytes):	12								
	Example Response:	\$VNRRG,8,+006.271,+000.031,-002.000*66								
Offset	Name	Format	Unit	Description						
0	Yaw	float	deg	Yaw angle.						
4	Pitch	float	deg	Pitch angle.						
8	Roll	float	deg	Roll angle.						

You can configure the device to output this register at a fixed rate using the Async Data Output Type register (Register 6). Once configured the data in this register will be sent out with the \$VNYPR header.

9.1.2 Attitude Quaternion

Quaternion									
	Register ID :	9		Async Header : QTN	Access :	Read Only			
	Comment :	Attitude s	olution	as a quaternion.					
	Size (Bytes): 16								
Example Response: \$VNRRG,9,-0.017386,-0.000303,+0.055490,+0.998308*4F									
Offset	Name	Format	Unit	Description					
0	Quat[0]	float	-	Calculated attitude as quate	rnion.				
4	Quat[1]	float	-	Calculated attitude as quate	rnion.				
8	Quat[2]	float	-	Calculated attitude as quate	rnion.				
12	Quat[3]	float	-	Calculated attitude as quate	rnion. Scalar compor	nent.			

This register contains four values representing the quaternion vector. The quaternion provides a redundant, nonsingular attitude representation that is well suited for describing arbitrary, large rotations. The quaternion is a non-dimensional 4x1 unit vector with the fourth value as the scalar term. The fields of this register are represented with fixed point precision for the serial protocol and 32-bit floating point precision for the SPI protocol. This is a read-only register. All filtering and other mathematical operations performed by the VN-200 are performed using quaternions. The quaternion used by the VN-200 has the following form.

$$q[0] = e_x * \sin\left(\frac{\vartheta}{2}\right)$$
$$q[1] = e_y * \sin\left(\frac{\vartheta}{2}\right)$$
$$q[2] = e_z * \sin\left(\frac{\vartheta}{2}\right)$$
$$q[3] = \cos\left(\frac{\vartheta}{2}\right)$$
$$(e_x)$$

Where $e = \begin{cases} e_x \\ e_y \\ e_z \end{cases}$ is the principal axis and ϑ is the principal angle.

i

You can configure the device to output this register at a fixed rate using the Async Data Output Type register (Register 6). Once configured the data in this register will be sent out with the \$VNQTN header.

9.1.3 Yaw, Pitch, Roll, Magnetic, Acceleration, and Angular Rates

Yaw, Pitch, Roll, Magnetic, Acceleration, and Angular Rates								
	Register ID :	27		Async Header : YMR	Access :	Read Only		
	Comment :	Attitude s	solution, r	magnetic, acceleration, and comp	ensated angular	rates.		
	Size (Bytes):	48						
	Example Response:	\$VNRRG,	27,+006.3	80,+000.023,-001.953,+1.0640,-				
		0.2531,+3	3.0614,+0	0.005,+00.344,-09.758,-0.001222	2,-0.000450,-0.00	1218*4F		
Offset	Name	Format	Unit	Description				
0	Yaw	float	deg	Calculated attitude heading ang	gle in degrees.			
4	Pitch	float	deg	Calculated attitude pitch angle i	in degrees.			
8	Roll	float	deg	Calculated attitude roll angle in	degrees.			
12	MagX	float	Gauss	Compensated magnetometer m	neasurement in x	-axis.		
16	MagY	float	Gauss	Compensated magnetometer m	neasurement in y	-axis.		
20	MagZ	float	Gauss	Compensated magnetometer m	neasurement in z	-axis.		
24	AccelX	float	m/s ²	Compensated accelerometer m	easurement in x-	axis.		
28	AccelY	float	m/s ²	Compensated accelerometer m	easurement in y-	axis.		
32	AccelZ	float	m/s ²	Compensated accelerometer m	easurement in z-	axis.		
36	GyroX	float	rad/s	Compensated angular rate in x-	axis.			
40	GyroY	float	rad/s	Compensated angular rate in y-	axis.			
44	GyroZ	float	rad/s	Compensated angular rate in z-	axis.			

You can configure the device to output this register at a fixed rate using the Async Data Output Type register (Register 6). Once configured the data in this register will be sent out with the \$VNYMR header.

9.1.4 Quaternion, Magnetic, Acceleration and Angular Rates

Quaternion, Magnetic, Acceleration, and Angular Rates							
	Register ID :	15		Async Header : QMR	Access :	Read Only	
	Comment :	Attitude solution, r	nagnetic,	acceleration, and compensated a	ngular rates.		
	Size (Bytes):	52					
Exam	ple Response:	\$VNRRG,15,-0.0170	057,-0.00	0767,+0.056534,+0.998255,+1.06	70,-0.2568,+3.0	696,-	
		00.019,+00.320,-09	9.802,-0.0	02801,-0.001186,-0.001582*65			
Offset	Name	Format	Unit	Description			
0	Quat[0]	float	-	Calculated attitude as quaternio	n.		
4	Quat[1]	float	-	Calculated attitude as quaternio	n.		
8	Quat[2]	float	-	Calculated attitude as quaternio	n.		
12	Quat[3]	float	-	Calculated attitude as quaternio	n. Scalar compo	nent.	
16	MagX	float	Gauss	Compensated magnetometer m	easurement in x	-axis.	
20	MagY	float	Gauss	Compensated magnetometer m	easurement in y	-axis.	
24	MagZ	float	Gauss	Compensated magnetometer m	easurement in z	-axis.	
28	AccelX	float	m/s ²	Compensated accelerometer me	easurement in x-	axis.	
32	AccelY	float	m/s ²	Compensated accelerometer me	easurement in y-	axis.	
36	AccelZ	float	m/s ²	Compensated accelerometer me	easurement in z-	axis.	
40	GyroX	float	rad/s	Compensated angular rate in x-a	ixis.		
44	GyroY	float	rad/s	Compensated angular rate in y-a	ixis.		
48	GyroZ	float	rad/s	Compensated angular rate in z-a	ixis.		

You can configure the device to output this register at a fixed rate using the Async Data Output Type register (Register 6). Once configured the data in this register will be sent out with the \$VNQMR header.

9.1.5 Magnetic Measurements

Magnetic Measurements									
	Register ID :	17	Asy	nc Header :	MAG	Access :	Read Only		
	Comment :	Magnetometer measurements.							
	Size (Bytes):	12	12						
Exam	ple Response:	\$VNRRG,17,+1.0647,-0.2498,+3.0628*66							
Offset	Name	Format	Unit	Description					
0	MagX	float	Gauss	Compensat	ed magnetome	eter measurement in >	k-axis.		
4	MagY	float Gauss Compensated magnetometer measurement in y-axis.				/-axis.			
8	MagZ	float Gauss Compensated magnetometer measurement in z-axis.				z-axis.			

You can configure the device to output this register at a fixed rate using the Async Data Output Type register (Register 6). Once configured the data in this register will be sent out with the \$VNMAG header.

9.1.6 Acceleration Measurements

	Acceleration Measurements							
	Register ID :	18		Async Header :	ACC	Access : Read Only		
	Comment :	Acceleration measure	ements.					
	Size (Bytes):	12						
Example Response:		\$VNRRG,18,+00.013,	+00.354	,-09.801*65				
Offset	Name	Format	Unit	Description				
0	AccelX	float	m/s ²	Compensated acc	eleromete	r measurement in x-axis.		
4	AccelY	float	m/s ²	Compensated acc	eleromete	r measurement in y-axis.		
8	AccelZ	float	m/s ²	Compensated acc	eleromete	er measurement in z-axis.		

You can configure the device to output this register at a fixed rate using the Async Data Output Type register (Register 6). Once configured the data in this register will be sent out with the \$VNACC header.

9.1.7 Angular Rate Measurements

	Angular Rate Measurements							
	Register ID :	19		Async Header :	GYR	Access :	Read Only	
	Comment :	Compensated ang	ular rates	5.				
	Size (Bytes):	12						
Example Response:		\$VNRRG,19,+0.002	2112,-0.0	00362,-0.000876*6	6C			
Offset	Name	Format	Unit	Description				
0	GyroX	float	rad/s	Compensated ang	ular rate in x-axis.			
4	GyroY	float	rad/s	Compensated ang	ular rate in y-axis.			
8	GyroZ	float	rad/s	Compensated ang	ular rate in z-axis.			

You can configure the device to output this register at a fixed rate using the Async Data Output Type register (Register 6). Once configured the data in this register will be sent out with the \$VNGYR header.

9.1.8 Magnetic, Acceleration and Angular Rates

		Magnet	ic, Accel	eration, and Angula	r Rates		
	Register ID :	20		Async Header :	MAR	Access :	Read Only
	Comment :	Magnetic, accelera	ation, and	d compensated ang	ular rates.		
	Size (Bytes):	36					
Example Response:		\$VNRRG,20,+1.06 0.000466*64	84,-0.257	78,+3.0649,-00.005,	+00.341,-09	.780,-0.000963,+0	.000840,-
Offset	Name	Format	Unit	Description			
0	MagX	float	Gauss	Compensated mag	gnetometer	measurement in x	-axis.
4	MagY	float	Gauss	Compensated mag	gnetometer	measurement in y	-axis.
8	MagZ	float	Gauss	Compensated mag	gnetometer	measurement in z	-axis.
12	AccelX	float	m/s ²	Compensated acco	elerometer	measurement in x-	axis.
16	AccelY	float	m/s ²	Compensated acco	elerometer	measurement in y-	-axis.
20	AccelZ	float	m/s ²	Compensated acc	elerometer	measurement in z-	axis.
24	GyroX	float	rad/s	Compensated ang	ular rate in :	x-axis.	
28	GyroY	float	rad/s	Compensated ang	ular rate in	y-axis.	
32	GyroZ	float	rad/s	Compensated ang	ular rate in a	z-axis.	

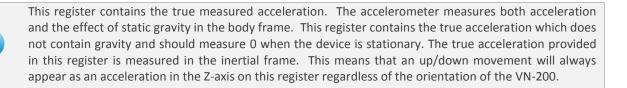
You can configure the device to output this register at a fixed rate using the Async Data Output Type register (Register 6). Once configured the data in this register will be sent out with the \$VNMAR header.

9.1.9 Yaw, Pitch, Roll, True Body Acceleration, and Angular Rates

	Yaw, Pitch, Roll, True Body Acceleration, and Angular Rates							
	Register ID: 239 Async He			Header: YBA Access: Read Only				
	Comment :	Attitude solution as y	aw, pitch	n, roll and the inertial acceleration.				
	Size (Bytes):	36						
Evamr	ole Response:	\$VNRRG,239,-124.74	3,+001.0	19,-000.203,+00.019,-00.001,+00.039,+00.001665,-				
слаттр	ne kesponse.	00.000785,+00.00064	17*55					
Offset	Name	Format	Unit	Description				
0	Yaw	float	deg	Calculated attitude heading angle in degrees.				
4	Pitch	float	deg	Calculated attitude pitch angle in degrees.				
8	Roll	float	deg	Calculated attitude roll angle in degrees.				
12	BodyAccelX	float	m/s ²	Linear acceleration estimate in the body X-axis. (no gravity)				
16	BodyAccelY	float	m/s ²	Linear acceleration estimate in the body Y-axis. (no gravity)				
20	BodyAccelZ	float	m/s ²	Linear acceleration estimate in the body Z-axis. (no gravity)				
24	GyroX	float	rad/s	Compensated angular rate in the body X-axis.				
28	GyroY	float	rad/s	Compensated angular rate in the body Y-axis.				
32	GyroZ	float	rad/s	Compensated angular rate in the body Z-axis.				

You can configure the device to output this register at a fixed rate using the Async Data Output Type register (Register 6). Once configured the data in this register will be sent out with the \$VNYBA header.

This register contains the true measured acceleration. The accelerometer measures both acceleration and the effect of static gravity in the body frame. This register contains the true acceleration which does not contain gravity and should measure 0 when the device is stationary.



		Yaw, Pite	ch, Roll,	True Inertial Acceleration and Angular Rates
	Register ID :	240		Async Header : YIA Access : Read Only
	Comment :	Attitude so	olution a	s yaw, pitch, roll and the inertial acceleration.
	Size (Bytes):	36		
Exam	nple Response:	\$VNRRG,24	40,-124.	642,+000.993,-000.203,+00.009,-00.027,+00.084,-00.000479,-
		00.000522	,+00.000	0076*5F
Offset	Name	Format	Unit	Description
0	Yaw	float	deg	Calculated attitude heading angle in degrees.
4	Pitch	float	deg	Calculated attitude pitch angle in degrees.
8	Roll	float	deg	Calculated attitude roll angle in degrees.
12	InertialAccelX	float	m/s ²	Compensated acceleration estimate in the inertial NED X-axis. (no gravity)
16	InertialAccelY	float	m/s²	Compensated acceleration estimate in the inertial NED Y-axis. (no gravity)
20	InertialAccelZ	float	m/s²	Compensated acceleration estimate in the inertial NED Z-axis. (no gravity)
24	GyroX	float	rad/s	Compensated angular rate in the body X-axis.
28	GyroY	float	rad/s	Compensated angular rate in the body Y-axis.
32	GyroZ	float	rad/s	Compensated angular rate in the body Z-axis.

9.1.10 Yaw, Pitch, Roll, True Inertial Acceleration, and Angular Rates

You can configure the device to output this register at a fixed rate using the Async Data Output Type register (Register 6). Once configured the data in this register will be sent out with the \$VNYIA header.

9.2 **Configuration Registers**

9.2.1 VPE Basic Control

	VPE Basic Control						
	Register ID :	35		Firmware : v1.0.0.0 Access : Read / Write			
	Comment :	Provides algorithm		over various features relating to the onboard attitude filtering			
	Size (Bytes):	4					
Exai	mple Response:	\$VNRRG,3	35,1,3,1	,1*77			
Offset	Name	Format	Unit	Description			
0	Enable	uint8	-	Enable / Disable the Vector Processing Engine (VPE).			
1	HeadingMode	uint8	-	Heading mode used by the VPE.			
2	FilteringMode	uint8	_	Filtering Mode used by the VPE.			
3	TuningMode	uint8	_	Tuning Mode used by the VPE.			

Table 54 – Enable

Value	State
0	DISABLE
1	ENABLE

Table 55 – HeadingMode

Value	Mode
0	Absolute Heading
1	Relative Heading
2	Indoor Heading

Table 56 - Filtering Mode

Value	Mode
0	OFF
1	MODE 1

Table 57 - Tuning Mode

Value	Mode
0	OFF
1	MODE 1

9.2.2 VPE Magnetometer Basic Tuning

VPE Magnetometer Basic Tuning							
	Register ID :	36		Firmware : v1.0.0.0	Access :	Read / Write	
	Comment : Size (Bytes): Example Response:	36	Provides basic control of the adaptive filtering and tuning for the magnetor 36 \$VNRRG,36,5,5,5,3,3,3,4,4,4*68				
Offset	Name	Format	Unit	Description			
0	BaseTuningX	float	0/10	Base Magnetic Tuning X-Axis [0 - 10]. This sets the level of confidence placed i axis when no disturbances are present. provides better heading accuracy, but w magnetic interference.	A larger nu	mber	
4	BaseTuningY	float	0/10	Base Magnetic Tuning Y-Axis [0 - 10]. This sets the level of confidence placed i axis when no disturbances are present. provides better heading accuracy, but w magnetic interference.	A larger nu	mber	
8	BaseTuningZ	float	0/10	Base Magnetic Tuning Z-Axis [0 - 10]. This sets the level of confidence placed i axis when no disturbances are present. provides better heading accuracy, but w magnetic interference.	A larger nu	mber	
12	AdaptiveTuningX	float	0/10	Level of adaptive tuning for X-Axis.			
16	AdaptiveTuningY	float	0/10	Level of adaptive tuning for Y-Axis.			
20	AdaptiveTuningZ	float	0/10	Level of adaptive tuning for Z-Axis.			
24	AdaptiveFilteringX	float	0/10	Level of adaptive filtering for X-Axis.			
28	AdaptiveFilteringY	float	0/10	Level of adaptive filtering for Y-Axis.			
32	AdaptiveFilteringZ	float	0/10	Level of adaptive filtering for Z-Axis.			

9.2.3 VPE Accelerometer Basic Tuning

	VPE Accelerometer Basic Tuning							
	Register ID :	38		Firmware :	v1.0.0.0	Access :	Read / Write	
	Comment : Size (Bytes): Example Response:	36	Provides basic control of the adaptive filtering and tuning for the accelerometer. 36 \$VNRRG,38,5,5,5,3,3,3,4,4,4*66					
Offset	Name	Format	Unit	Description				
0	BaseTuningX	float	0 / 10	Base Acceler This sets the axis when no provides bet	ometer Tuning X-Ax level of confidence disturbances are pi ter pitch/roll headin acceleration interfe	placed in the accel resent. A larger nu g accuracy, but wit	mber	
4	BaseTuningY	float	0 / 10	This sets the axis when no provides bet	ometer Tuning Y-Ax level of confidence disturbances are pr ter pitch/roll accura interference.	placed in the accel resent. A larger nu	mber	
8	BaseTuningZ	float	0 / 10	This sets the axis when no provides bet	ometer Tuning Z-Ax level of confidence disturbances are pr ter pitch/roll accura interference.	placed in the accel resent. A larger nu	mber	
12	AdaptiveTuningX	float	0/10	Level of adap	otive tuning for X-Ax	is.		
16	AdaptiveTuningY	float	0/10	Level of adap	otive tuning for Y-Ax	is.		
20	AdaptiveTuningZ	float	0/10		otive tuning for Z-Ax			
24	AdaptiveFilteringX	float	0/10	•	otive filtering for X-A			
28	AdaptiveFilteringY	float	0/10	•	otive filtering for Y-A			
32	AdaptiveFilteringZ	float	0/10	Level of adap	otive filtering for Z-A	xis.		

9.3 Factory Defaults

Settings Name	Default Factory Value
VPE Basic Control	1,1,1,1
VPE Magnetic Basic Tuning	4,4,4,5,5,5,5.5,5.5,5.5
VPE Accelerometer Basic Tuning	6,6,6,3,3,3,5,5,5

10 INS Subsystem

10.1 **Commands**

10.1.1 Set Filter Bias Command

This command will instruct the VN-200 to copy the current filter bias estimates into register 74. After sending this command you will need to issue the write settings command (Section 6.1.3) to save the state of this register to flash memory. Once saved the VN-200 will use these bias estimates as the initial state at startup.

Example Command	Message
UART Command	\$VNSFB*4D
UART Response	\$VNSFB*4D
SPI Command (8 bytes)	11 00 00 00 (shown as hex)
SPI Response (8 bytes)	00 11 00 00 (shown as hex)

Table 58 - Example Gyro Bias Command

10.2 Measurement Registers

10.2.1 INS Solution – LLA

				INS Solution - LLA	
	Register ID :	63	A	sync Header : INS	Access: Read Only
	Comment :				
	Size (Bytes):	72			
	Example Response:	\$VNRRG,	63,33381	.1.902862,1694,0004,+009.500,-00	4.754,-000.225,+32.95602815,-
		096.7142	4297,+00)171.195,-000.840,-000.396,-000.1	09,07.8,01.6,0.23*5F
Offse	t Name	Format	Unit	Description	
0	Time	double	sec	GPS time of week in seconds.	
8	Week	uint16	week	GPS week.	
10	Status	uint16	-	Status flags for INS filter. Hexade	cimal format. See table below.
12	Yaw	float	deg	Yaw angle relative to true north.	
16	Pitch	float	deg	Pitch angle relative to horizon.	
20	Roll	float	deg	Roll angle relative to horizon.	
24	Latitude	double	deg	INS solution position in geodetic	latitude.
32	Longitude	double	deg	INS solution position in geodetic	longitude.
40	Altitude	double	m	Height above ellipsoid. (WGS84)	
48	NedVelX	float	m/s	INS solution velocity in NED fram	e. (North)
52	NedVelY	float	m/s	INS solution velocity in NED fram	e. (East)
56	NedVelZ	float	m/s	INS solution velocity in NED fram	e. (Down)
60	AttUncertainty	float	deg	Uncertainty in attitude estimate.	
64	PosUncertainty	float	m	Uncertainty in position estimate.	
68	VelUncertainty	float	m/s	Uncertainty in velocity estimate.	

Table 59 - INS Status

Name	Bit Offset	Format	Description
Mode 0 2 bits		2 bits	Indicates the current mode of the INS filter.
			0 = Not tracking. Insufficient dynamic motion to estimate attitude.
			1 = Sufficient dynamic motion, but solution not within performance specs.
			2 = INS is tracking and operating within specifications.
GpsFix	2	1 bit	Indicates whether the GPS has a proper fix.
Error	3	4 bits	Sensor measurement error code. See table below.
			0 = No errors detected.
Reserved	7	9 bits	Reserved for future use.

Table 60 - Error Bitfield

Name	Bit Offset	Format	Description
Time Error	0	1 bit	High if INS filter loop exceeds 5 ms.
IMU Error	1	1 bit	High if IMU communication error is detected.
Mag/Pres Error	2	1 bit	High if Magnetometer or Pressure sensor error is detected.
GPS Error	3	1 bit	High if GPS communication error is detected.

You can configure the device to output this register at a fixed rate using the Async Data Output Type register (Register 6). Once configured the data in this register will be sent out with the \$VNINS header.

10.2.2 INS Solution - ECEF

INS Solution – ECEF									
	Register ID :	64	A	sync Header: INE	Access :	Read Only			
	Comment :								
	Size (Bytes):	72							
Exan	nple Response:			22917,1694,0004,+009.315,-004.76		56.433,-			
				51.679,-000.224,-000.476,-000.564,	07.7,01.5,0.22*65				
Offset	Name	Format	Unit	Description					
0	Time	double	sec	GPS time of week in seconds.					
8	Week	uint16	week	GPS week.					
10	Status	uint16	-	Status flags for INS filter. See table	e below.				
12	Yaw	float	deg	Yaw angle relative to true north.					
16	Pitch	float	deg	Pitch angle relative to horizon.					
20	Roll	float	deg	Roll angle relative to horizon.					
24	PositionX	double	m	INS solution position in ECEF. (X-ax	(is)				
32	PositionY	double	m	INS solution position in ECEF. (Y-ax	(is)				
40	PositionZ	double	m	INS solution position in ECEF. (Z-ax	(is)				
48	VelocityX	float	m/s	INS solution velocity in ECEF frame	e. (X-axis)				
52	VelocityY	float	m/s	INS solution velocity in ECEF frame	e. (Y-axis)				
56	VelocityZ	float	m/s	INS solution velocity in ECEF frame	e. (Z-axis)				
60	AttUncertainty	float	deg	Expected uncertainty in estimated	attitude.				
64	PosUncertainty	, float	m	Expected uncertainty in estimated	position.				
68	VelUncertainty	float	m/s	Expected uncertainty in estimated	velocity.				

Table 61 - INS Status

Name	Bit Offset	Format	Description
Mode	0	2 bits	Indicates the current mode of the INS filter.
			0 = Not tracking. Insufficient dynamic motion to estimate attitude.
			1 = Sufficient dynamic motion, but solution not within performance specs.
			2 = INS is tracking and operating within specifications.
GpsFix	2	1 bit	Indicates whether the GPS has a proper fix.
Error	3	4 bits	Sensor measurement error code. See table below.
			0 = No errors detected.
Reserved	7	9 bits	Reserved for future use.

Table 62 - Error Bitfield

Name	Bit Offset	Format	Description
Time Error	0	1 bit	High if INS filter loop exceeds 5ms.
IMU Error	1	1 bit	High if IMU communication error is detected.
Mag/Pres Error	2	1 bit	High if Magnetometer or Pressure sensor error is detected.
GPS Error	3	1 bit	High if GPS communication error is detected.

You can configure the device to output this register at a fixed rate using the Async Data Output Type register (Register 6). Once configured the data in this register will be sent out with the \$VNINE header.

Ĭ

10.2.3 INS State - LLA

INS State – LLA								
	Register ID :	72	ŀ	Async Header : ISL	Access :	Read Only		
	Comment :							
	Size (Bytes):	72						
Exan	nple Response:			+001.398,+001.806,+00.000295,-0				
				804,-096.71414860,+00179.592,+0	00.181,-000.073,-			
		-	·	322,-10.040*52				
Offset	Name	Format	Unit	Description				
0	Yaw	float	deg	Yaw angle relative to true north.				
4	Pitch	float	deg	Pitch angle relative to horizon.				
8	Roll	float	deg	Roll angle relative to horizon.				
12	Latitude	double	deg	Estimated position in geodetic la	titude.			
20	Longitude	double	deg	Estimated position in geodetic lo	ngitude.			
28	Altitude	double	m	Estimated height above ellipsoid	. (WGS84)			
36	VelocityX	float	m/s	Estimated velocity in NED frame.	(North)			
40	VelocityY	float	m/s	Estimated velocity in NED frame.	(East)			
44	VelocityZ	float	m/s	Estimated velocity in NED frame.	(Down)			
48	AccelX	float	m/s ²	Estimated acceleration in body fr	ame. (X-axis)			
52	AccelY	float	m/s ²	Estimated acceleration in body fr	ame. (Y-axis)			
56	AccelZ	float	m/s ²	Estimated acceleration in body fr	ame. (Z-axis)			
60	AngularRateX	float	rad/s	Estimated angular rate in body fr	ame. (X-axis)			
64	AngularRateY	float	rad/s	Estimated angular rate in body fr	ame. (Y-axis)			
68	AngularRateZ	float	rad/s	Estimated angular rate in body fr	ame. (Z-axis)			

You can configure the device to output this register at a fixed rate using the Async Data Output Type register (Register 6). Once configured the data in this register will be sent out with the \$VNISL header.

10.2.4 INS State - ECEF

				INS State – EO	EF		
	Register ID :	73	A	sync Header :	ISE	Access : Read Only	/
	Comment :						
	Size (Bytes):	72					
	Example Read		,	,	,	502,-00.000403,+00.000394,-	
	Response:					606,+000.001,-	
		,	,).255,-00.308,-1			
	Example Async	. ,	,			-00.000403,+00.000394,-	
	Message:					606,+000.001,-	
			-).255,-00.308,-1	0.060*XX		
Offse		Format	Unit	Description			
0	Yaw	float	deg	Yaw angle rel			
4	Pitch	float	deg	Pitch angle re			
8	Roll	float	deg	Roll angle rela			
12	PositionX	double	m	Estimated pos			
20	PositionY	double	m	Estimated pos	sition in ECE	. (Y-axis)	
28	PositionZ	double	m	Estimated pos			
36	VelocityX	float	m/s			frame. (X-axis)	
40	VelocityY	float	m/s	Estimated vel	ocity in ECEF	frame. (Y-axis	
44	VelocityZ	float	m/s	Estimated vel	ocity in ECEF	frame. (Z-axis)	
48	AccelX	float	m/s ²	Estimated acc	eleration in	body frame. (X-axis)	
52	AccelY	float	m/s ²	Estimated acc	eleration in	body frame. (Y-axis)	
56	AccelZ	float	m/s ²	Estimated acc	eleration in	body frame. (Z-axis)	
60	AngularRateX	float	rad/s	Estimated ang	gular rate in	oody frame. (X-axis)	
64	AngularRateY	float	rad/s	Estimated ang	gular rate in	oody frame. (Y-axis)	
68	AngularRateZ	float	rad/s	Estimated ang	gular rate in	oody frame. (Z-axis)	

You can configure the device to output this register at a fixed rate using the Async Data Output Type register (Register 6). Once configured the data in this register will be sent out with the \$VNISE header.

10.3 **Configuration Registers**

10.3.1 INS Basic Configuration

			INS Bas	ic Configuration		
	Register ID :	67	Fir	mware: 1.0.0.0	Access :	Read / Write
	Comment :					
	Size (Bytes):	4				
Examp	le Response:	\$VNRRG,67,2,1,0,0*7	71			
Offset	Name	Format	Unit	Description		
0	Scenario	uint8	-	INS mode.		
				0 = AHRS. Attitude estim	ation only. (Legacy	mode)
				1 = General purpose INS	with barometric pre	ssure sensor.
				2 = General purpose INS	without barometric	pressure
				sensor.		
1	AhrsAiding	uint8	-	Enables AHRS attitude aid	ding.	
2	Resv1	uint8	-	Reserved for future use.	Field should be set t	o zero.
3	Resv2	uint8	-	Reserved for future use.	Field should be set t	o zero.

The estimated attitude (YprU) field in group 5 of the user configurable binary output messages is not valid when the Scenario mode is set to AHRS mode. AHRS mode is a legacy mode that is present for reverse compatibility with previous firmware versions. It is not recommended for use in future designs and may not be supported on future firmware versions.

10.3.2 Startup Filter Bias Estimate

			Startu	p Filter Bias Estimate		
	Register ID :	74		Firmware: v0.2 and up	Access :	Read / Write
	Comment :	Sets the initial es	timate for	the filter bias states.		
	Size (Bytes):	28				
Exampl	e Command:	\$ VNWRG,74,0,0	,0,0,0,0,0*	69		
Offset	Name	Format	Unit	Description		
0	GyroBiasX	float	rad/s	X-axis gyro bias.		
4	GyroBiasY	float	rad/s	Y-axis gyro bias.		
8	GyroBiasZ	float	rad/s	Z-axis gyro bias.		
12	AccelBiasX	float	m/s^2	X-axis accelerometer bias.		
16	AccelBiasY	float	m/s^2	Y-axis accelerometer bias.		
20	AccelBiasZ	float	m/s^2	Z-axis accelerometer bias.		
24	PressureBias	s float	m	Pressure bias.		

10.4 Factory Defaults

Settings Name	Default Factory Value
INS Basic Configuration	2,1,0,0
Startup Filter Bias Estimate	0,0,0,0,0,0,0

11 Hard/Soft Iron Estimator Subsystem

11.1 **Configuration Registers**

11.1.1 Magnetometer Calibration Control

			Magnet	tometer Calibration Control					
	Register ID :	44		Firmware :v1.0.0.0Access :Read / Write					
	Comment :	Controls the mag	gnetome	eter real-time calibration algorithm.					
-	Size (Bytes):	4	-* - 0						
	ole Response:	\$VNRRG,44,1,2,							
Offset		Format	Unit	Description					
0	HSIMode	uint8	-	Controls the mode of operation for the onboard real-time magnetometer hard/soft iron compensation algorithm.					
1	HSIOutput	uint8	-	Controls the type of measurements that are provided as outputs from the magnetometer sensor and also subsequently used in the attitude filter.					
2									

Table 63 – HSI_Mode Field

Mode	Value	Description
HSI_OFF	0	Real-time hard/soft iron calibration algorithm is turned off.
HSI_RUN	1	Runs the real-time hard/soft iron calibration. The algorithm will continue using its existing solution. The algorithm can be started and stopped at any time by switching between the HSI_OFF and HSI_RUN state.
HSI_RESET	2	Resets the real-time hard/soft iron solution.

Table 64 – HSI_Output Field

Mode	Value	Description
NO_ONBOARD	1	Onboard HSI is not applied to the magnetic measurements.
USE_ONBOARD	3	Onboard HSI is applied to the magnetic measurements.

11.2 Status Registers

11.2.1 Calculated Magnetometer Calibration

		Ca	lculated	Magnetometer Calibration		
	Register ID :	47		Firmware : v1.0.0.0	Access :	Read Only
	Comment :	Calculated magn	etometei	r calibration values.		
	Size (Bytes):	48				
Exam	ple Response:	\$VNRRG,46,1,0,0	,0,1,0,0,0	0,1,0,0,0*70		
Offset	Name	Format	Unit	Description		
0	C[0,0]	float	-			
4	C[0,1]	float	-			
8	C[0,2]	float	-			
12	C[1,0]	float	-			
16	C[1,1]	float	-			
20	C[1,2]	float	-			
24	C[2,0]	float	-			
28	C[2,1]	float	_			
32	C[2,2]	float	-			
36	B[0]	float	-			
40	B[1]	float	-			
44	B[2]	float	-			

This register contains twelve values representing the calculated hard and soft iron compensation parameters. The magnetic measurements are compensated for both hard and soft iron using the following model.

(X)		[<i>C</i> 00	<i>C</i> 01	<i>C</i> 02]	(MX - B0)
Y	=	<i>C</i> 10	<i>C</i> 11	C12 ·	$ \begin{pmatrix} MX - B0 \\ MY - B1 \\ MZ - B2 \end{pmatrix} $
(Z)		L <i>C</i> 20	C21	C22]	(MZ - B2)

The variables $\{MX, MY, MZ\}$ are components of the measured magnetic field. The $\{X, Y, Z\}$ variables are the new magnetic field measurements outputted after compensation for hard/soft iron effects.

11.3 Factory Defaults

Settings Name	Default Factory Value
Magnetometer Calibration Control	1,3,5

11.4 **Command Prompt**

The command prompt provides a fast and simple means of configuring and monitoring the status of the sensor by typing commands to the unit using the serial port.

11.4.1 List Available Commands

Commands for the System subsystem can be accessed by typing in 'hsi' at the command prompt. To view all available commands, type 'hsi ?'. Below is a view of a terminal window showing a list of the available commands.

11.4.2 Info

```
hsi info
----- Hard/Soft Iron Estimator State Information -----
Magnetometer Calibration Control (Register 44):
 HsiMode: Run
 OutMode: Use Onboard
 ConvergeRate: 5
Magnetometer Calibration Status (Register 46):
 LastBin: 0
 NumMeas: 102
 AvgResidual: 0.014
 LastMeas: +0.599 +0.538 +2.910
 Bins[0]: 215
 Bins[1]: 188
 Bins[2]: 135
 Bins[3]: 47
 Bins[4]: 198
 Bins[5]: 231
 Bins[6]: 202
Calculated Magnetometer Calibration (Register 47):
 +00.966 +00.000 +00.000 -00.215
 +00.000 +00.966 +00.000 -00.179
 +00.000 +00.000 +00.966 -00.077
Num Measurements: 358
Filter Run Count: 358
Mag Uncertainty : 0.00
_____
```


11.4.3 PlotInput

			Uncalib	rated X	ΥY			
+							+	
	×	*		* > *	* * *		 	
 *	* *	*	*	 * *	*	**	 	
**	* ** *		* * *	* *	*		 * * *	
* *	* *	** *	*	* *	* *		* * 	
* * +	+ 		*	1	*	*		*
*	*		* *	* 5 *	f		' *	* *
* * * *		*	*		*	*		*
* * ***	ł	* * *	*		* * *	*	1	*
*	4	ł	*	 *	*	f	 *	* *
^ * ** *-*+	^			* *	*	*		*
* * * *	*			+	*	**	*	*
 	* *	**	* *	l .	*		*	*
* * *	*	*	*	* *	* *	*	** **	* *
**		*			*	*	*	*
** *** * *				*	*	*	 	* *
+**** **** *		*	* *	+			+***-	*
* * * ***			ر	* 			** * *	
*	*		*	 *	*		* *	
	*						 	
							1	
+				+			+	

11.4.4 PlotOutput

	Calibra	ated XY	
+		+	++
	** *	* * *	
	* * * * * *	* * **	
	* * * * *	* * *	
Ì		* * * * *	
* *		* * ** * *	** * * *
*-+	**	+	۱ ++
*			* * **
**	* *	** * * * * *	** * **
* * *	*	* * *	*
**	* *	 *	*
* * *	* *	* * * *	
**		* *	* * *
*	* * *		* * **+
*** *	*	* *	* * *
**	*	* **	*
*	* * *** *	* *	*
* ****	*	* ** * *	** ** *
*	* *	*	** *
* * *	* *	, ,	* *
* *	*	* [;]	* **
***	*	+	* ***
* * ****	* *	* *	**
*			**
	* *		
	*	* *	
+			+
Plot Center : +0).000, +0.000).946, +0.946		

12 World Magnetic & Gravity Module

12.1 Configuration Registers

12.1.1 Magnetic and Gravity Reference Vectors

	Magnetic and Gravity Reference Vectors										
	Register ID :	21		Firmware : 1.0.0.0	Access:	Read / Write					
Comment :		Magnetic and gravity reference vectors.									
Size (Bytes):		24									
Example Command:		\$VNWRG,21,1,0,1.8,0,0,-9.79375*56									
Offse	t Name	Format	Unit	Description							
0	MagRefX	float	Gauss	X-Axis Magnetic Reference							
4	MagRefY	float	Gauss	Y-Axis Magnetic Reference							
8 MagRefZ		float	Gauss	Z-Axis Magnetic Reference							
12	AccRefX	float	m/s ²	X-Axis Gravity Reference							
16	AccRefY	float	m/s ²	Y-Axis Gravity Reference							
20	AccRefZ	float	m/s ²	Z-Axis Gravity Reference							

This register contains the reference vectors for the magnetic and gravitational fields as used by the onboard filter. The values map to either the user-set values or the results of calculations of the onboard reference models (see the Reference Vector Configuration register). When the reference values come from the onboard model(s), those values are read-only. When the reference models are disabled, the values reflect the user reference vectors and will be writable. For example, if the onboard World Magnetic Model is enabled and the onboard Gravitational Model is disabled, only the gravity reference values will be modified on a register write. Note that the user reference vectors will not be overwritten by the onboard models, but will retain their previous values for when the onboard models are disabled.

12.1.2 Reference Vector Configuration

Reference Vector Configuration								
	Register ID :	83		Firmwa	re :	v1.0.0.0	Access :	Read / Write
	Comment :	Control register	for both	the onbo	ard	world magnetic a	ind gravity model corr	ections.
Size (Bytes):		32						
Example Response:		\$VNRRG,83,0,0	,0,0,1000	,0.000,+0	0.00	000000,+000.000	00000,+00000.000*4	E
Offset	Name	For	mat U	nit D	escri	iption		
0	UseMagMo	del uin	t8 -	Se	et to	1 to use the wor	ld magnetic model.	
1	UseGravityN	/lodel uin	t8 -	Se	et to	1 to use the wor	ld gravity model.	
2	Resv1	uin	t8 -	R	eserv	ved for future use	e. Must be set to zero).
3	Resv2	uin	t8 -	R	eserv	ved for future use	e. Must be set to zero).
4	RecalcThres	hold uin	t32 -				veled before magnetic d for the new positior	e ,
8	Year	floa	at ye	ear Th	ne re		pressed as a decimal y	
12				*:	**	4 byte padding *	**	
16	Latitude	dou	uble d	eg Tl	ne re	eference latitude	position in degrees.	
24	Longitude	dou	uble d	eg Ti	ne re	eference longitud	e position in degrees.	
32	Altitude	dou	ıble m		ne re eter		above the reference e	ellipsoid in

This register allows configuration of the onboard spherical harmonic models used to calculate the local magnetic and gravitational reference values. Having accurate magnetic reference values improves the accuracy of heading when using the magnetometer and accounts for magnetic declination. Having accurate gravitational reference values improves accuracy by allowing the INS filter to more accurately estimate the accelerometer biases. The VN-200 currently includes the EGM96 gravitational model and the WMM2010 magnetic model. The models are upgradable to allow updating to future models when available.

The magnetic and gravity models can be individually enabled or disabled using the UseMagModel and UseGravityModel parameters, respectively. When disabled, the corresponding values set by the user in the Reference Vector register (see Section 12.1.1) will be used instead of values calculated by the onboard model.

The VN-200 starts up with the user configured reference vector values. Shortly after startup (and if the models are enabled), the location and time set in this register will be used to update the reference vectors. When a 3D GPS fix is available, the location and time reported by the GPS will be used to update the model. If GPS is lost, the reference vectors will hold their last valid values. The model values will be recalculated whenever the current position has changed by the RecaclThreshold or the date has changed by more than approximately 8 hours, whichever comes first.

12.2 Factory Defaults

Settings Name	Default Factory Value
Magnetic and Gravity Reference Vectors	1,0,1.8,0,0,-9.793746
Reference Vector Configuration	1,1,0,0,1000,0,0,0,0

12.3 Command Prompt

The command prompt provides a fast and simple means of configuring and monitoring the status of the sensor by typing commands to the unit using the serial port.

12.3.1 List Available Commands

Commands for the System subsystem can be accessed by typing in 'refmodel' at the command prompt. To view all available commands, type 'refmodel ?'. Below is a view of a terminal window showing a list of the available commands.

```
refmodel ?
World Magnetic & Gravity Reference Model Commands:
Command: Description:
info Information on the current available reference models.
calc Calculate the magnetic and gravity reference for a given position & time.
```

12.3.2 Info

```
refmodel info
----- World Magnetic & Gravity Reference Model Information ------
World Magnetic Model
 Status : Present
Name : WMM2010
 Name
Order
 Order : 12
Model Start Date : 01/01/2010
 Model Expiration Date : 01/01/2015
World Gravity Model
 Status : Present
 Name
                      : EGM96
 Order : 12
Model Start Date : 01/01/1986
 Model Expiration Date : 01/01/2100
Magnetic and Gravity Reference Vectors (Register 21)
 MagRefX : +001.000
MagRefY : +000.000
MagRefZ : +001.800
 GravityRefX : +000.000
 GravityRefY : +000.000
 GravityRefZ : -009.794
Reference Vector Configuration (Register 83)
 UseMagneticModel : 0
 UseGravityModel : 0
 RecalcThreshold : 1000 meters
 Year : 0
Latitude : +00.00000000 deg
Longitude : +00.00000000 deg
Altitude : +00000.000 m
_____
                                     _____
```


12.3.3 **Calc**

refmodel calc ----- World Magnetic & Gravity Reference Model Calculator -----Enter latitude : 30 Enter longitude : -94 Enter altitude : 100 Enter decimal year : 2014.5 Calculation Results -----Latitude : +30.0000000 deg Longitude : -094.0000000 deg Altitude : +00100.000 m Magnetic Reference Vector : +000.243, +000.008, +000.409 Gauss Gravity Reference Vector : +000.000, +000.000, -009.793 $\mbox{m/s}^2$ _____

Please Read Carefully:

Information in this document is provided solely in connection with VectorNav Technologies, LLC ("VectorNav") products. VectorNav reserves the right to make changes, corrections, modifications, or improvements to this document, and the products and services described herein at any time, without notice.

All VectorNav products are sold pursuant of VectorNav's terms and conditions of sale.

No license to any intellectual property, expressed or implied, is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by VectorNav for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

Information in this document supersedes and replaces all information previously supplied.

The VectorNav logo is a registered trademark of VectorNav Technologies, LLC. All other names are the property of their respective owners.

© 2014 VectorNav Technologies, LLC – All rights reserved

